PUBLICATIONS

FEATURED

Knight, F. C., Gilchuk, P., Kumar, A., Becker, K. W., Sevimli, S., Jacobson, M. E., ... & Wilson, J. T. (2019). Mucosal immunization with a pH-responsive nanoparticle vaccine induces protective CD8+ lung-resident memory T cells. ACS nano, 13(10), 10939-10960.
Shae, D., Baljon, J. J., Wehbe, M., Christov, P. P., Becker, K. W., Kumar, A., ... & Wilson, J. T. (2020). Co-delivery of peptide neoantigens and stimulator of interferon genes agonists enhances response to cancer vaccines. ACS nano, 14(8), 9904-9916.
Wang-Bishop, L., Wehbe, M., Pastora, L. E., Yang, J., Kimmel, B. R., Garland, K. M., ... & Wilson, J. T. (2024). Nanoparticle Retinoic Acid-Inducible Gene I Agonist for Cancer Immunotherapy. ACS Nano, 18(18), 11631-11643.
Wang-Bishop, L., Kimmel, B. R., Ngwa, V. M., Madden, M. Z., Baljon, J. J., Florian, D. C., ... & Wilson, J. T. (2023). STING-activating nanoparticles normalize the vascular-immune interface to potentiate cancer immunotherapy. Science Immunology, 8(83), eadd1153
Palmer, C. R., Pastora, L. E., Kimmel, B. R., Pagendarm, H. M., Kwiatkowski, A. J., Stone, P. T., ... & Wilson, J. T. (2024). Covalent Polymer‐RNA Conjugates for Potent Activation of the RIG‐I Pathway. Advanced Healthcare Materials, 2303815
Shae, D., Becker, K. W., Christov, P., Yun, D. S., Lytton-Jean, A. K., Sevimli, S., ... & Wilson, J. T. (2019). Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nature nanotechnology, 14(3), 269-278

ALL

2024

Baljon, J. J., Kwiatkowski, A. J., Pagendarm, H. M., Stone, P. T., Kumar, A., Bharti, V., … & Wilson, J. T. (2024). A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists.ACS Nano. https://doi.org/10.1021/acsnano.3c04471

Palmer, C. R., Pastora, L. E., Kimmel, B. R., Pagendarm, H. M., Kwiatkowski, A. J., Stone, P. T., … & Wilson, J. T. (2024). Covalent Polymer‐RNA Conjugates for Potent Activation of the RIG‐I Pathway.Advanced Healthcare Materials, 2303815. https://doi.org/10.1002/adhm.202303815

Wang-Bishop, L., Wehbe, M., Pastora, L. E., Yang, J., Kimmel, B. R., Garland, K. M., … & Wilson, J. T. (2024). Nanoparticle Retinoic Acid-Inducible Gene I Agonist for Cancer Immunotherapy.ACS Nano18(18), 11631-11643. https://doi.org/10.1021/acsnano.3c06225

Pastora, L. E., Namburu, N. S., Arora, K., Christov, P. P., & Wilson, J. T. (2024). STING-Pathway Inhibiting Nanoparticles (SPINs) as a Platform for Treatment of Inflammatory Diseases.ACS Applied Bio Materials. https://doi.org/10.1021/acsabm.3c01305

2023

Wang-Bishop, L., Kimmel, B. R., Ngwa, V. M., Madden, M. Z., Baljon, J. J., Florian, D. C., … & Wilson, J. T. (2023). STING-activating nanoparticles normalize the vascular-immune interface to potentiate cancer immunotherapy.Science Immunology8(83), eadd1153. https://doi.org/10.1126/sciimmunol.add1153

Pagendarm, H. M., Stone, P. T., Kimmel, B. R., Baljon, J. J., Aziz, M. H., Pastora, L. E., … & Wilson, J. T. (2023). Engineering endosomolytic nanocarriers of diverse morphologies using confined impingement jet mixing.Nanoscale15(39), 16016-16029. https://doi.org/10.1039/D3NR02874G

Florian, D. C., Bennett, N. E., Odziomek, M., Baljon, J. J., Wehbe, M., Merkel, A. R., … & Wilson, J. T. (2023). Nanoparticle STING Agonist Reprograms the Bone Marrow to an Antitumor Phenotype and Protects Against Bone Destruction.Cancer Research Communications3(2), 223-234. https://doi.org/10.1158/2767-9764.CRC-22-0180

2022

De Mel, J., Hossain, M., Shofolawe-Bakare, O., Mohammad, S. A., Rasmussen, E., Milloy, K., … & Werfel, T. A. (2022). Dual-Responsive Glycopolymers for Intracellular Codelivery of Antigen and Lipophilic Adjuvants.Molecular pharmaceutics19(12), 4705-4716. https://doi.org/10.1021/acs.molpharmaceut.2c00750

Suryadevara, N., Kumar, A., Ye, X., Rogers, M., Williams, J. V., Wilson, J. T., … & Joyce, S. (2022). A molecular signature of lung-resident CD8+ T cells elicited by subunit vaccination.Scientific reports12(1), 19101. https://doi.org/10.1038/s41598-022-21620-7

Baljon, J. J., & Wilson, J. T. (2022). Bioinspired vaccines to enhance MHC class-I antigen cross-presentation.Current opinion in immunology77, 102215. https://doi.org/10.1016/j.coi.2022.102215

Carson, C. S., Becker, K. W., Garland, K. M., Pagendarm, H. M., Stone, P. T., Arora, K., … & Wilson, J. T. (2022). A nanovaccine for enhancing cellular immunity via cytosolic co-delivery of antigen and polyIC RNA.Journal of Controlled Release345, 354-370. https://doi.org/10.1016/j.jconrel.2022.03.020

Garland, K. M., Sheehy, T. L., & Wilson, J. T. (2022). Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy.Chemical reviews122(6), 5977-6039. https://doi.org/10.1021/acs.chemrev.1c00750

Sharma, J., Carson, C. S., Douglas, T., Wilson, J. T., & Joyce, S. (2022). Nano-Particulate Platforms for Vaccine Delivery to Enhance Antigen-Specific CD8+ T-Cell Response.Vaccine Design: Methods and Protocols, Volume 3. Resources for Vaccine Development, 367-398. https://doi.org/10.1007/978-1-0716-1892-9_19

2021

Garland, K. M., Rosch, J. C., Carson, C. S., Wang-Bishop, L., Hanna, A., Sevimli, S., … & Wilson, J. T. (2021). Pharmacological activation of cGAS for cancer immunotherapy.Frontiers in Immunology12, 753472. https://doi.org/10.3389/fimmu.2021.753472

Wilson, J. T., & Lund, A. W. (2021). Building new roads to stronger immunity.Science Advances7(13), eabh3971. https://doi.org/10.1126/sciadv.abh3971

Munson, M. J., O’Driscoll, G., Silva, A. M., Lázaro-Ibáñez, E., Gallud, A., Wilson, J. T., … & Sabirsh, A. (2021). A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery.Communications biology4(1), 211. https://doi.org/10.1038/s42003-021-01728-8

Ulkoski, D., Munson, M. J., Jacobson, M. E., Palmer, C. R., Carson, C. S., Sabirsh, A., … & Krishnamurthy, V. R. (2021). High-throughput automation of endosomolytic polymers for mrna delivery.ACS Applied Bio Materials4(2), 1640-1654. https://doi.org/10.1021/acsabm.0c01463

Knight, F. C., & Wilson, J. T. (2021). Engineering Vaccines for Tissue‐Resident Memory T Cells.Advanced therapeutics4(4), 2000230. https://doi.org/10.1002/adtp.202000230

Nguyen, D. C., Shae, D., Pagendarm, H. M., Becker, K. W., Wehbe, M., Kilchrist, K. V., … & Wilson, J. T. (2021). Amphiphilic polyelectrolyte graft copolymers enhance the activity of cyclic dinucleotide STING agonists.Advanced healthcare materials10(2), 2001056. https://doi.org/10.1002/adhm.202001056

Wehbe, M., Wang-Bishop, L., Becker, K. W., Shae, D., Baljon, J. J., He, X., … & Wilson, J. T. (2021). Nanoparticle delivery improves the pharmacokinetic properties of cyclic dinucleotide STING agonists to open a therapeutic window for intravenous administration.Journal of controlled release330, 1118-1129. https://doi.org/10.1016/j.jconrel.2020.11.017

2020

Jacobson, M. E., Becker, K. W., Palmer, C. R., Pastora, L. E., Fletcher, R. B., Collins, K. A., … & Wilson, J. T. (2020). Structural optimization of polymeric carriers to enhance the immunostimulatory activity of molecularly defined RIG-I agonists.ACS Central Science6(11), 2008-2022. https://doi.org/10.1021/acscentsci.0c00568

Shae, D., Baljon, J. J., Wehbe, M., Christov, P. P., Becker, K. W., Kumar, A., … & Wilson, J. T. (2020). Co-delivery of peptide neoantigens and stimulator of interferon genes agonists enhances response to cancer vaccines.ACS nano14(8), 9904-9916. https://doi.org/10.1021/acsnano.0c02765

Kumar, A., Suryadevara, N. C., Wolf, K. J., Wilson, J. T., Di Paolo, R. J., Brien, J. D., & Joyce, S. (2020). Heterotypic immunity against vaccinia virus in an HLA-B* 07: 02 transgenic mousepox infection model.Scientific reports10(1), 13167. https://doi.org/10.1038/s41598-020-69897-w

Wang-Bishop, L., Wehbe, M., Shae, D., James, J., Hacker, B. C., Garland, K., … & Wilson, J. T. (2020). Potent STING activation stimulates immunogenic cell death to enhance antitumor immunity in neuroblastoma.Journal for immunotherapy of cancer8(1). https://doi.org/10.1136%2Fjitc-2019-000282

2019

Ou, Y. C., Wen, X., Johnson, C. A., Shae, D., Ayala, O. D., Webb, J. A., … & Bardhan, R. (2019). Multimodal multiplexed immunoimaging with nanostars to detect multiple immunomarkers and monitor response to immunotherapies.ACS nano14(1), 651-663. https://doi.org/10.1021/acsnano.9b07326

Knight, F. C., Gilchuk, P., Kumar, A., Becker, K. W., Sevimli, S., Jacobson, M. E., … & Wilson, J. T. (2019). Mucosal immunization with a pH-responsive nanoparticle vaccine induces protective CD8+ lung-resident memory T cells.ACS nano13(10), 10939-10960. https://doi.org/10.1021/acsnano.9b00326

Ulkoski, D., Bak, A., Wilson, J. T., & Krishnamurthy, V. R. (2019). Recent advances in polymeric materials for the delivery of RNA therapeutics.Expert Opinion on Drug Delivery16(11), 1149-1167. https://doi.org/10.1080/17425247.2019.1663822

Shae, D., Baljon, J. J., Wehbe, M., Becker, K. W., Sheehy, T. L., & Wilson, J. T. (2020). At the bench: Engineering the next generation of cancer vaccines.Journal of Leucocyte Biology108(4), 1435-1453. https://doi.org/10.1002/JLB.5BT0119-016R

Garland, K. M., Sevimli, S., Kilchrist, K. V., Duvall, C. L., Cook, R. S., & Wilson, J. T. (2019). Microparticle depots for controlled and sustained release of endosomolytic nanoparticles.Cellular and Molecular Bioengineering12, 429-442. https://doi.org/10.1007/s12195-019-00571-6

Baljon, J. J., Dandy, A., Wang-Bishop, L., Wehbe, M., Jacobson, M. E., & Wilson, J. T. (2019). The efficiency of cytosolic drug delivery using pH-responsive endosomolytic polymers does not correlate with activation of the NLRP3 inflammasome.Biomaterials science7(5), 1888-1897. https://doi.org/10.1039/C8BM01643G

Wilson, J. T. (2019). A sweeter approach to vaccine design.Science363(6427), 584-585. https://doi.org/10.1126/science.aav9000

Shae, D., Becker, K. W., Christov, P., Yun, D. S., Lytton-Jean, A. K., Sevimli, S., … & Wilson, J. T. (2019). Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy.Nature nanotechnology14(3), 269-278. https://doi.org/10.1038/s41565-018-0342-5

Jacobson, M. E., Wang-Bishop, L., Becker, K. W., & Wilson, J. T. (2019). Delivery of 5′-triphosphate RNA with endosomolytic nanoparticles potently activates RIG-I to improve cancer immunotherapy.Biomaterials science7(2), 547-559. https://doi.org/10.1039/C8BM01064A

2018

Elion, D. L., Jacobson, M. E., Hicks, D. J., Rahman, B., Sanchez, V., Gonzales-Ericsson, P. I., … & Cook, R. S. (2018). Therapeutically active RIG-I agonist induces immunogenic tumor cell killing in breast cancers.Cancer Research78(21), 6183-6195. https://doi.org/10.1158/0008-5472.CAN-18-0730

Qiu, F., Becker, K. W., Knight, F. C., Baljon, J. J., Sevimli, S., Shae, D., … & Wilson, J. T. (2018). Poly (propylacrylic acid)-peptide nanoplexes as a platform for enhancing the immunogenicity of neoantigen cancer vaccines.Biomaterials182, 82-91. https://doi.org/10.1016/j.biomaterials.2018.07.052

Palmer, C. R., Jacobson, M. E., Fedorova, O., Pyle, A. M., & Wilson, J. T. (2018). Environmentally triggerable retinoic acid-inducible gene I agonists using synthetic polymer overhangs.Bioconjugate chemistry29(3), 742-747. https://doi.org/10.1021/acs.bioconjchem.7b00697

2017 – 2013

Sevimli, S., Knight, F. C., Gilchuk, P., Joyce, S., & Wilson, J. T. (2017). Fatty acid-mimetic micelles for dual delivery of antigens and imidazoquinoline adjuvants.ACS biomaterials science & engineering3(2), 179-194. https://doi.org/10.1021/acsbiomaterials.6b00408

Ou, Y. C., Webb, J. A., Faley, S., Shae, D., Talbert, E. M., Lin, S., … & Bardhan, R. (2016). Gold nanoantenna-mediated photothermal drug delivery from thermosensitive liposomes in breast cancer.ACS omega1(2), 234-243. https://doi.org/10.1021/acsomega.6b00079

Shae, D., Postma, A., & Wilson, J. T. (2016). Vaccine delivery: where polymer chemistry meets immunology.Therapeutic Delivery7(4), 193-196. https://doi.org/10.4155/tde-2016-0008

Gilchuk, P., Knight, F. C., Wilson, J. T., & Joyce, S. (2017). Eliciting epitope-specific cd8+ t cell response by immunization with microbial protein antigens formulated with α-galactosylceramide: theory, practice, and protocols.Vaccine Adjuvants: Methods and Protocols, 321-352. https://doi.org/10.1007/978-1-4939-6445-1_25

Graham, D. J., Wilson, J. T., Lai, J. J., Stayton, P. S., & Castner, D. G. (2016). Three-dimensional localization of polymer nanoparticles in cells using ToF-SIMS.Biointerphases11(2). https://doi.org/10.1116/1.4934795

Gilchuk, P., Hill, T. M., Wilson, J. T., & Joyce, S. (2015). Discovering protective CD8 T cell epitopes—no single immunologic property predicts it!.Current opinion in immunology34, 43-51. https://doi.org/10.1016/j.coi.2015.01.013

Lane, D. D., Su, F. Y., Chiu, D. Y., Srinivasan, S., Wilson, J. T., Ratner, D. M., … & Convertine, A. J. (2015). Dynamic intracellular delivery of antibiotics via pH-responsive polymersomes.Polymer chemistry6(8), 1255-1266. https://doi.org/10.1039/C4PY01249F

Wilson, J. T., Postma, A., Keller, S., Convertine, A. J., Moad, G., Rizzardo, E., … & Stayton, P. S. (2015). Enhancement of MHC-I antigen presentation via architectural control of pH-responsive, endosomolytic polymer nanoparticles.The AAPS journal17, 358-369. https://doi.org/10.1208/s12248-014-9697-1

Wilson, J. T., & Chaikof, E. L. (2014). Molecular Engineering of Cell and Tissue Surfaces with Polymer Thin Films. InMicro-and Nanoengineering of the Cell Surface (pp. 281-314). William Andrew Publishing. https://doi.org/10.1016/B978-1-4557-3146-6.00013-1

Keller, S., Wilson, J. T., Patilea, G. I., Kern, H. B., Convertine, A. J., & Stayton, P. S. (2014). Neutral polymer micelle carriers with pH-responsive, endosome-releasing activity modulate antigen trafficking to enhance CD8+ T cell responses.Journal of Controlled Release191, 24-33. https://doi.org/10.1016/j.jconrel.2014.03.041

Wilson, J. T., Keller, S., Manganiello, M. J., Cheng, C., Lee, C. C., Opara, C., … & Stayton, P. S. (2013). pH-Responsive nanoparticle vaccines for dual-delivery of antigens and immunostimulatory oligonucleotides.ACS nano7(5), 3912-3925. https://doi.org/10.1021/nn305466z