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Vocal production learning—the ability of an organism to modify 
the acoustic properties of its vocalizations as a result of social ex-
perience—is an example of convergent evolution, having evolved 
independently within multiple lineages of birds and mammals, in-
cluding humans, where it manifests as speech (Fig. 1A) (1, 2). Vo-
cal production learning (“vocal learning”) has been extensively 
studied in songbirds, highlighting numerous shared behavioral 
features of birdsong and speech learning, such as a dependence 
on auditory input during a critical developmental period and a ju-
venile babbling phase of sensorimotor exploration prior to the 
maturation of the adult vocalizations (1). Convergence between 
song-learning birds and humans extends to neuroanatomical spe-
cializations, including direct corticobulbar projections from the 
vocal motor cortex analog to the hindbrain motoneurons control-
ling the vocal apparatus (3) and shared transcriptional specializa-
tions in analogous speech- and song-specialized brain regions (4). 
Thus, songbirds have become a premier model for exploring the 
fundamental brain anatomical, molecular, and genomic features 

associated with vocal learning (1, 3). An expanding literature on 
vocal learning behavior across mammals suggests an underappre-
ciated diversity in the phenotypic expression of vocal learning 
across the taxa traditionally thought to possess it (2, 5–8). Study 
of the diverse forms of mammalian vocal learning behaviors could 
broaden our understanding of the core molecular, anatomical 
and physiological brain mechanisms of vocal learning and of the 
mechanisms underlying the convergent evolution of skilled motor 
behaviors more broadly. 

We evaluated evidence of convergent genomic specializations 
shared among four lineages of vocal learning mammals that inde-
pendently evolved this trait — bats, cetaceans, pinnipeds, and hu-
mans (Fig. 1A) — using whole-genome datasets and recently 
developed computational approaches. Specifically, we used pro-
tein-coding sequences from genomes generated by the Zoonomia 
Consortium (9, 10) and models of evolutionary rate convergence 
(11, 12) to identify protein-coding regions repeatedly associated 
with the evolution of vocal learning across mammals. Although 
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we found 200 protein-coding genes significantly associated with 
vocal learning, none of them showed strong evidence of selection 
in all four mammalian clades and only five showed strong evi-
dence of selection in three out of the four clades. Due to individ-
ual lineages contributing disproportionately to many of the 
protein-coding results, we hypothesized that non-coding regula-
tory elements might also be under constraint for the evolution of 
vocal learning.. We next profiled open chromatin, a proxy for reg-
ulatory element activity (13), in multiple brain regions and so-
matic tissues in the Egyptian fruit bat, a mammal with robust 
vocal plasticity (14–16) to identify vocalization-associated regula-
tory genomic specializations. We accomplished this by combining 
anatomical tracing and electrophysiological recordings in vocaliz-
ing bats to identify a region of motor cortex associated with vocal 
production. The vocalization-associated epigenomic data col-
lected from this region of this bat species — combined with hun-
dreds of mammalian genomes (17, 18), their associated 
reference-free whole-genome alignments (19), and high-quality 
epigenomic data from the motor cortex of multiple additional 
mammalian species (20–22) — provided the foundation to apply 
a machine learning approach, the Tissue-Aware Conservation In-
ference Toolkit (TACIT) (23). This approach allowed us to identify 
putative enhancers, distal regulatory elements that tend to be 
highly tissue-specific, associated with the convergent evolution of 
vocal learning. In sum, we combined recently developed compu-
tational tools and neuroanatomical experiments in the Egyptian 
fruit bat and found evidence of convergent evolution in both pro-
tein-coding and noncoding DNA sequences. 

 
Results 
Convergent evolution in protein sequence associated with 

vocal learning behavior 
To explore the possibility of shared genomic specializations 

associated with vocal learning, we first applied RERconverge (11) 
to recently released protein-coding alignments obtained for hun-
dreds of mammals (10) to identify protein-coding genes whose 
relative rates of evolution differ between vocal learners and other 
mammals, and which may thus be under selection related to vocal 
learning (11, 24). We analyzed 16,209 high-quality protein-coding 
gene alignments across 215 boreoeutherian mammals, including 
26 vocal learning species, 164 vocal non-learners, and 25 species 
without confident annotations (Fig. 1A and data S1) (Materials 
and Methods). We found evidence for lower evolutionary rates in 
vocal learners compared to non-learners in 804 genes and evi-
dence for elevated evolutionary rates in 102 genes (Tau adj. p < 
0.01 and permulations (24) adj. p < 0.01) (Data S2 and fig. S1). To 
identify which specific clades were driving the differential rates of 
evolution, we applied a Bayes Factor analysis that examines each 
clade individually for evidence of selection (18) (data S2). Despite 
the large number of significant associations based on RERcon-
verge, we found no single protein-coding gene with consistently 

lower or elevated evolutionary rates in all four vocal learning 
clades. Among the genes with reduced evolutionary rates in vocal 
learning species, we found only five out of 804 protein-coding 
genes with strong evidence of selective pressure in three out of 
the four vocal learning clades: CENPC, CATSPERG, MGA, TREML2, 
and ZCWPW1 (Bayes Factor > 5) (Fig. 1, B and C). None of these 
proteins reached the threshold for selection in the human lineage 
(Materials and Methods), which could indicate different mecha-
nisms of evolution in the laurasiatherian vocal learning clades rel-
ative to humans. Our results suggest that the vast majority of 
protein-coding genes that we identify are evolving much faster or 
much slower in one clade, but are only weakly associated with 
vocal learning across the other lineages. 

The most strongly associated genes were CENPC (Fig. S2A; Tau 
= -0.30; Tau adj. p = 8.7 × 10−6; permulations adj. p <= 0.001), and 
GRM8 (Fig. S2B, Tau = 0.26; Tau adj. p = 3.5x10−4; permulations 
adj. p <= 0.001). GRM8 represents an especially promising candi-
date because it has previously been linked to anatomical special-
izations for vocal learning in songbirds (25) and is a known target 
of the speech-associated FOXP2 transcription factor (26). In pri-
mates and rodents, both GRM8 and FOXP2 are markers of a rare 
class of medium spiny neurons implicated in motor control that 
coexpress both DRD1 and DRD2 dopamine receptors (27–29). 
Overall, our results support a model where vocal learning behav-
ior is only partially explained by differences in protein-coding 
gene evolutionary rates. 

To further explore selection on these vocal learning-associ-
ated protein-coding genes, we applied an additional set of tools 
from the HyPhy package that compares non synonymous (dN) 
and synonymous (dS) substitution rates in the nucleotides of the 
amino acid sequence (30). Here, these sensitive evolutionary 
models of codon substitution formally compare selective re-
gimes, modeled as dN/dS distributions, between branches anno-
tated with the vocal learning phenotype and the rest of the 
phylogenetic tree (12, 30). The results were largely consistent 
with amino-acid level methods: the protein-coding genes with 
lower protein evolutionary rates in vocal learning clades also 
tended to be under higher constraint in vocal learning clades (Wil-
coxon p = 2.5 × 10−4), and the genes with higher evolutionary rates 
in vocal learning species showed evidence of accelerated evolu-
tion in these same clades (Wilcoxon p = 7.9 × 10−9) (fig. S3 and 
data S3). To further explore the functional trends of protein-cod-
ing genes associated with the evolution of vocal learning, we fo-
cused on the set of proteins that showed consistent behavior 
between RERconverge and the HyPhy RELAX model (Benjamini-
Hochberg false discovery rate q < 0.05). This yielded a set of 126 
proteins that were more slowly evolving in vocal learning clades 
and 74 with an elevated rate of evolutionary changes relative to 
other species. The complementary approaches of RERconverge 
and HyPhy RELAX identify a total of 200 vocal learning-associated 
genes and suggest that this behavior, vocal learning, is having a 
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substantial impact on protein evolutionary rates. 
We further interrogated evolutionary pressures across the vo-

cal learning-associated genes by looking for evidence of diversify-
ing position selection using the HyPhy BUSTED-PH model. 
Evidence of diversifying positive selection was found in 6.3% (13 
transcripts, 9 genes) within the set of genes with elevated rates 
of evolution in vocal learning species based on RER-Converge and 
the HyPhy RELAX model. As expected, we identified much lower 
rates of diversifying positive selection in the gene with lower rates 
of evolution in vocal learning species (1.0%) and within the set of 
randomly chosen transcripts (2.0%). Among the 9 genes that 
showed evidence of positive selection, 8 have been associated 
with neurodevelopment (CCDC136, KIDINS220, LRRN1, RSG5, 
CYLD, GABRA5, NETO2, KIAA1109) (31–38). The gene CCDC136 
has more directly been associated with multiple language-related 
phenotypes in humans (31, 39, 40). These results suggest that the 
vocal learning-associated genes across mammals may tend to 
play a role in human brain development and vocal behavior. 

To more systematically explore the functional trends within 
these 126 and 74 protein-coding genes, we conducted a gene on-
tology analysis using EnrichR. Protein-coding genes with lower 
evolutionary rates in vocal learning species were associated with 
Regulation of DNA-templated Transcription (p=1.10x10−6, adj. 
p=1.9x10−5), Regulation of Canonical Wnt Signaling Pathway 
(p=5.1x10−5, adj. p=0.013), and the Autism human phenotype on-
tology (p=5.8x10−6, adj. p=0.0028) (Fig. 1, F and G, and data S4). 
The genes with accelerated evolutionary rates were not enriched 
for any pathways at an adjusted p < 0.05 with at least 5 genes 
contributing. The enrichment of autism-associated genes among 
the set of genes with greater levels of conservation in vocal learn-
ers (MECP2, RAD21, DYRK1A, SIM1, FTSJ1, MEIS2, FGFR1) is par-
ticularly interesting given prevalence of speech delay and early 
vocal production differences in human subjects with autism (41, 
42) and the previous association between autism genes and the 
evolution of vocal behavior in birds and bats (43, 44). Based on 
the association with autism, we further explored the function of 
the vocal learning-conserved gene set in the context of early vocal 
production differences. Although only four human loci have been 
associated with differences in early vocal production, protein-
coding genes overlapping two of these loci show higher levels of 
conservation in vocal learning clades (INSC, DAPK3) (45). 

 
Identification of a vocal production region in egyptian fruit 

bats 
The enrichment of transcription factors in the set of vocal 

learning-associated proteins suggests that differences in gene 
regulation are likely to be a major factor in the evolution of vocal 
learning. Since gene regulation is often tissue-specific, we sought 
to identify motor regions of the brain involved in vocal production 
and contrast their epigenomic profiles with motor regions not in-
volved in vocal production. We conducted this comparison in the 

Egyptian fruit bat, Rousettus aegyptiacus, a mammalian species 
with robust vocal plasticity (16, 46) and with data on its motor 
cortex mapping (47). To identify a candidate region, we were 
guided by the hypothesis that fine vocal-motor control, a key abil-
ity to vocal learning, may be associated with the anatomical spe-
cialization of the motor cortex (48–51). In particular, previous 
work suggested that a cortical region controlling complex vocal 
behavior would be characterized by a direct, monosynaptic pro-
jection onto the motoneurons controlling the vocal source (in 
mammals, the larynx) (48–52). Such a direct connection has been 
observed robustly in humans (53–56) and vocal learning birds 
[songbirds, parrots and hummingbirds, (57–59)], but has not been 
reliably found in vocal non-learning species such as chimpanzees 
(41) or mice (60) 

We first determined whether a direct corticobulbar anatomi-
cal connection existed in R. aegyptiacus. Guided by cortical map-
ping experiments (47), we injected anterograde tracers into the 
part of the motor cortex that has been associated with orofacial 
motor control (ofM1) and identified fluorescently labeled de-
scending cortical fibers in the hindbrain region where the laryn-
geal motoneurons reside: the nucleus ambiguus (NA) (Fig. 2A; fig. 
S4, A and B; and movie S1). To test the existence of a direct mon-
osynaptic projection, we also specifically identified laryngeal mo-
toneurons in the NA by retrogradely labeling them through 
bilateral muscular injection of CTB (Cholera Toxin B) into the cri-
cothyroid muscles of the bat larynx (Fig. 2A). We validated the 
colocalization of descending cortical fibers and local synaptic bou-
tons with laryngeal motoneurons using two complementary la-
beling approaches: one relying on immunostaining of synapses 
(VGLUT1) and the other one using viral labeling of synapses (SYN) 
(Fig. 2, B to F, and fig. S5). Across five bats, 79.2% of the retro-
gradely labeled motoneurons (61/77) colocalized with descend-
ing cortical fibers and 26% of them (20/77) colocalized with both 
cortical fibers and synaptic boutons, pointing to the existence of 
a robust direct corticospinal projection to laryngeal motoneurons 
(Fig. 2G). This colocalization in the NA was consistent across the 
different techniques (Fig. 2G and fig. S5) and could not be found 
in any other brainstem motor nuclei, including the hypoglossal 
nucleus, which controls the tongue and neck muscles (fig. S4, C to 
E). We noted that the corticobulbar fibers crossed the midline an-
terior to the NA at the level of the facial nucleus, offering a direct 
contralateral path for the innervation of the NA (fig. S4F). These 
anatomical findings highlight the bat ofM1 as a possible candidate 
region associated with vocal production. 

To further corroborate the role of ofM1 in vocal control, we 
tested whether ongoing single-cell neural activity in this area was 
associated with vocal production. We performed wireless electro-
physiological recordings from four bats engaged in free vocal in-
teractions with peers (Fig. 2H). Vocalizations were identified and 
recorded using wireless call detectors placed around the necks of 
the individual bats (see Materials and Methods, (46)). We found 
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that about half of the recorded single units in ofM1 (115/237) 
showed a significant change in firing rates when the bats pro-
duced vocalizations as compared to staying quiet (fig. S6, A to C) 
(ANOVA with a Poisson Generalized Linear Model per cell; p-value 
threshold = 0.001; Materials and Methods). In 25% of ofM1 cells 
that were excited during vocal production (26/104), the change 
of activity could not be accounted for by jaw or tongue move-
ments, indicating that these cells were engaged in the motor con-
trol of movements specific to vocal production (fig. S6D). 
Furthermore, many of the single units had a sustained increase of 
activity during production of vocalizations, but not during percep-
tion of vocalizations (Fig. 2I). To further assess this specific neural 
modulation during vocal-motor production, we quantified the in-
formation between the time-varying firing rate and the amplitude 
modulation of the vocalizations. This analysis confirmed that 
ofM1 neurons had significantly higher motor than auditory infor-
mation (Fig. 2J) (likelihood-ratio test on LME models, N=219, 
LRStat = 62.515, df = 1, p = 2.6645x10−5; average d-prime change 
in information gain during motor production = 0.15 ± 0.13, corre-
sponding to an increase of 0.286 ± 0.035 bits/s). Combined, the 
results of the anatomical and electrophysiological study defined 
ofM1 as a motor cortical area associated with vocal production in 
R. aegyptiacus. 

 
Epigenomic specializations in the vocal production region of 

the egyptian fruit bat motor cortex 
We next sought to epigenomically profile candidate regula-

tory elements in vocal and non-vocal brain regions in R. aegyp-
tiacus to identify vocal learning-associated regulatory genomic 
specializations. We generated a multi-tissue atlas of open chro-
matin data — indicative of regulatory activity — by performing 
ATAC-seq (assay for transposase-accessible chromatin sequenc-
ing (61)) across 7 brain regions and 3 somatic tissues of R. aegyp-
tiacus (Materials and Methods), including ofM1 (Fig. 3A). From a 
total set of 88,389 noncoding, non-promoter open chromatin re-
gions (OCRs) in primary motor cortex (M1), we identified 348 can-
didate enhancers with differential open chromatin between 
orofacial motor cortex (ofM1) and wing motor cortex (wM1) (p < 
0.05) (Fig. 3B and data S5) (Materials and Methods). Genes prox-
imal to OCRs with differential open chromatin between ofM1 and 
wM1 were significantly enriched for functional association with 
neuronal projections and transcriptional regulation (Data S6). 
These included OCRs near the genes of 51 known transcription 
factors (TFs), including FOXP2, a TF that has been extensively im-
plicated in human speech and vocal learning (Fig. 3C) (62). Nota-
bly, genes near OCRs differentially open between bat ofM1 and 
wM1 included genes we had identified as being under convergent 
acceleration in vocal learners using evolutionary approaches: 
RERconverge analysis (n = 11) and the HyPhy RELAX analysis (n=3; 
GATA3, LRRN1, TNIP3) (data S6). These specialized regions of 
open chromatin, coupled with an enrichment of transcription 

factors in the set of vocal learning-associated protein-coding 
genes, suggest that both cis and trans differences in gene regula-
tion contribute to the evolution of vocal learning behaviors. 

 
Convergent evolution in candidate enhancer sequences asso-

ciated with vocal learning behavior 
Since there is accumulating evidence that cis-regulatory dif-

ferences in enhancer regions are driving the evolution of complex 
traits (63–65), we sought to identify OCRs whose tissue- and cell 
type-specificity would be shared across species of vocal learners. 
Detecting cis-regulatory element differences associated with trait 
evolution is challenging because many enhancers can preserve 
the same regulatory function even when the underlying genome 
sequence is highly divergent, and many cis-regulatory elements 
have tissue-specific activity (66–68). Thus, methods for conver-
gent evolution that rely on the alignment of individual nucleo-
tides between species (11, 69, 70) are likely to miss a substantial 
proportion of key candidate enhancers. 

We therefore sought to extend our search for cis-regulatory 
elements whose evolution is associated with vocal learning be-
havior using a recently developed machine learning approach, 
TACIT [Tissue-Aware Conservation Inference Toolkit (23)]. Given 
that it is infeasible to map the brains and collect motor cortex tis-
sue from each vocal learning and closely related non-learning spe-
cies, the TACIT approach uses machine learning models (23) to 
predict motor cortex open chromatin across orthologous regions 
of the genome (66–68). TACIT then associates predictions with 
vocal learning in a way that corrects for phylogenetic relation-
ships (Fig. 4A). We used the predictions from convolutional neural 
networks (CNNs) that were previously trained using DNA se-
quence-based M1 open chromatin data obtained in this study for 
R. aegyptiacus with ATAC-seq and collected earlier for the mouse 
(21), the rat, and the macaque (20) to predict motor cortex open 
chromatin across 222 mammalian genomes (Materials and Meth-
ods) (23). Given that parvalbumin has been shown to be a shared 
marker of brain areas critical for vocal learning in songbirds and 
humans (4), we also used CNNs trained to predict cell type-spe-
cific open chromatin using ATAC-seq data from mouse and human 
M1 parvalbumin-positive neurons (M1-PV+) (22, 23, 71). We 
identified regions whose predicted open chromatin was consist-
ently lower or higher in vocal learners relative to vocal non-learn-
ers using phylogenetic logistic regression (72, 73) with 
phylogenetic permutations (24) [permulations adj. p < 0.1; Mate-
rials and Methods, (23)] (Fig. 4A). We identified 33 open chroma-
tin regions from our M1 CNN models that had lower predicted 
open chromatin in vocal learning species and 11 that had higher 
predicted open chromatin in vocal learning species (Fig. 4D, table 
S1, and data S7). From the M1-PV+ predictions, we identified five 
candidate enhancers that had lower predicted activity in vocal 
learning species and one candidate enhancer that had higher pre-
dicted regulatory activity in vocal learning species. (table S2 and 
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data S7). Unlike the protein-coding genes, the majority of vocal 
learning-associated enhancers showed evidence of higher or 
lower activity in at least three out of the four vocal learning clades 
(Fig. 4, B to D, and data S8). Consistent with the finding that con-
vergent vocal learning-associated gene regulation is primarily re-
pressive (4), we found that the majority of candidate enhancers 
(n = 38/50 OCRs, 76%) had lower predicted open chromatin activ-
ity in vocal learning relative to vocal non-learning mammals (fig. 
S7). 

To interpret potential functions of the vocal learning-associ-
ated candidate enhancers, we annotated the nearest genes in the 
mouse (data S9). In many cases, the genes closest to these puta-
tive enhancers have been associated with significant develop-
mental delay or complete absence of speech when disrupted in 
humans (tables S1 and S2). Four of the OCRs identified by the M1 
model were proximal to genes—GALC, TCF4, TSHZ3, and 
ZNF536—that were also near OCRs with differential activity be-
tween bat ofM1 and wM1 (data S6). Two of the vocal learning-
associated M1 OCRs were proximal to genes—DAAM1 and VIP—
previously shown to have convergent gene expression between 
humans and song-learning birds (4). To further explore the func-
tion of the vocal learning-associated OCRs in the motor cortex, we 
annotated their cell type-specificity using publicly available 
mouse BICCN data (74). The cell type most enriched for OCRs pre-
dicted to be lower in vocal learning species was Layer V ET (extra-
telencephalic) neurons, which have previously been implicated in 
vocal learning (75), but strong enrichments were also found for 
other cortical excitatory neurons (Fig. 4, E and F, and data S10). 

Among genes near vocal learning-associated OCRs, the DACT1 
(TACIT adj. p = 0.0014; RERconverge Tau adj. p<0.0001) and CELF4 
(TACIT adj. p < 0.023; RERconverge Tau adj. p<0.0034) proteins 
also displayed significantly lower relative evolutionary rates in vo-
cal learners. Despite the lack of direct evidence in the literature 
for its role in speech production, CELF4 has been associated with 
autism in the human population (76) and its function in Layer V 
pyramidal neurons has been linked with seizures in mice (77). 

Multiple M1-PV+ interneuron OCRs associated with vocal 
learning are near genes previously associated with autism. For ex-
ample, an OCR that is negatively associated with vocal learning 
evolution is in an intron of the gene CCSER1, which has nonsense 
mutations implicated in autism (78) and is in a locus associated 
with musical beat synchronization (79). An OCR that is positively 
associated with the evolution of vocal learning is in an intron of 
the gene CNTNAP4, whose deletions and copy number variation 
in humans and mice have been implicated in neurological disor-
ders, including autism in humans (80, 81). To test whether these 
associations would have been identified by chance, we tested 
whether vocal learning-associated OCRs tended to be near genes 
associated with autism. We found the M1-PV+ OCRs with human 
orthologs near genes associated with autism (82) tend to be more 
significantly associated with vocal learning evolution than other 

OCRs with human orthologs (Wilcoxon p=0.0071). 
 
Discussion 
Convergent evolution of vocal production learning has been 

associated with convergent evolution at the neuroanatomical 
level: cortical motor regions driving vocal production in humans 
and songbirds (human motor cortex and songbird RA) show in-
creased connectivity with the brainstem and striatum (3). These 
same motor regions also show convergent evolution in patterns 
of gene expression, with commonly decreased gene expression 
found in both song-learning birds and humans (4). In this study, 
we investigated convergent evolution of vocal learning in mam-
mals, both at the anatomical and the genetic level. First, we found 
a direct motor corticobulbar connection from a cortical region im-
plicated in vocal production in a vocal learning bat. Second, we 
revealed widespread evidence of convergent evolution across vo-
cal learning mammals in protein-coding sequences and candidate 
regulatory enhancers. 

Our parallel study of both coding and noncoding regions 
linked with the vocal learning trait identifies many protein-coding 
genes (200) and a smaller number of noncoding regions (50), dis-
tal sites of open chromatin, that are associated with vocal learn-
ing. Although a larger number of significant protein-coding genes 
are identified, the vast majority of these are primarily driven by 
strong evidence in one of the vocal learning clades and only weak 
evidence in the other three. In contrast, the majority of significant 
noncoding regions show robust evidence of convergent selective 
pressure in at least three out of the four clades. The larger num-
ber of identified proteins relative to open chromatin regions 
could be due to better statistical power from being able to di-
rectly model nucleotide evolution in protein-coding sequence, 
which tend to be more stable than regulatory elements across 
species (11, 12). We note, however, that only 5/200 of the signif-
icantly associated protein-coding genes showed robust evidence 
of differential rates of evolution in at least three of four vocal 
learning clades. Out of these 200 proteins, many were neurode-
velopmental transcription factors, which are among the most 
highly conserved genes in mammals (83) and thus likely to play 
roles in a broad range of contexts that could constrain their evo-
lution. It is also possible that some of the identified proteins could 
be associated with other convergent traits that correlate with vo-
cal learning across mammals, including echolocation (bats, ceta-
ceans), marine adaptations (cetaceans, pinnipeds), or increased 
longevity (bats, cetaceans, humans). 

In contrast, 33/50 vocal learning-associated OCRs had differ-
ential predicted open chromatin in at least three of four vocal 
learning clades; this independent convergence of gene regulatory 
function suggests that these OCRs may be critical for the evolu-
tion of vocal learning. Enhancers tend to have functions that are 
much more context- and tissue-specific (68), making them less 
functionally constrained than protein-coding genes, which could 
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perhaps allow more flexibility for an individual enhancer to evolve 
a new role for a specific trait like vocal learning. In sum, our re-
sults suggest that the evolution of mammalian vocal learning is 
largely driven by changes to the noncoding regulatory elements 
that orchestrate gene expression rather than to the protein-cod-
ing genes themselves. 

Despite the different methodologies applied to identify con-
vergent evolution in coding and noncoding regions, both protein 
coding- and regulatory element-focused approaches implicated 
gene functional pathways associated with human autism. In our 
protein-coding analyses, genes with lower evolutionary rates 
based on both RERconverge and HyPhy RELAX were enriched for 
autism function. Likewise, in our analyses of regulatory evolution, 
multiple autism-linked genes were near human orthologs of the 
vocal learning-associated M1-PV OCRs. In humans, autism is often 
associated with speech delays and differences in social behavior, 
both of which could be related to the evolutionary trait of vocal 
learning ability (84). Broadly, this could be evidence that genomic 
loci associated with a complex trait across mammals may also be 
associated with variations in related traits within the human pop-
ulation. 

The bulk motor cortex OCRs with lower predicted open chro-
matin in vocal learners show the strongest tendency to overlap 
with OCRs in Layer V ET neurons, which form long range projec-
tions (Fig. 4E). These results are consistent with our previous find-
ings showing decreases in the expression of axon guidance genes 
in the motor cortex of vocal learning species (4). Among other 
functions, the Layer V ET neurons implicated by TACIT create the 
corticospinal projections that have been hypothesized as an ana-
tomical landmark of vocal learners (2, 3, 48, 49, 56, 85, 86). Fur-
thermore, the neuroethological and anatomical experiments we 
conducted in R. Aegyptiacus provide evidence that corticospinal 
projection neurons are present in the motor cortex of that bat 
species and that this motor cortical region participates in vocal 
production. Thus, consistent with previous literature, our results 
support a model in which the loss of regulatory element activity 
in the motor cortex influences axon guidance properties of long 
range projection neurons, which allow more robust connectivity 
between the cortex and the brainstem of vocal learning mammals 
(4, 85, 87). Alternatively, these genetic differences could relate to 
potential differences in the density of disynaptic connections that 
have been associated with skilled motor behavior, including vo-
calization in non-human primates (88, 89). Notably, these long 
range projection neurons have also been associated with predis-
position to autism (90). 

 
Materials and methods summary 
To find vocal learning-associated convergent evolution in pro-

tein-coding sequences of the mammalian genome, we began with 
amino acid level multiple sequence alignments produced by the 
Zoonomia consortium (10). Those served as input to two classes 

of methods, RERconverge (11) and HyPhy (30). RERconverge with 
an additional permutations correction for phylogenetic structure 
(24) was used to find protein-coding sequences whose evolution-
ary rates were associated with the presence or absence of vocal 
learning. HyPhy RELAX was used to find protein-coding sequences 
that were evolving more slowly, neutrally, or faster in vocal learn-
ing species. In addition, the HyPhy BUSTED-PH method (12) was 
applied to find evidence of diversifying positive selection. The 
gene ontology analysis was performed on the intersection of the 
RERconverge and HyPhy results using EnrichR (91). To control for 
false positives across all methods, Benjamini-Hochberg false dis-
covery rate correction (92) was applied. 

To examine the existence of a direct monosynaptic projection 
in a vocal learning mammal, the corticobulbar projections in Egyp-
tian fruit-bats were mapped by tracing the projection from the 
orofacial motor cortex and from the cricothyroid muscles of the 
vocal cords. Performing immunohistochemistry in the brainstem 
revealed that synaptic boutons of cortical projection neurons 
overlapped with retrogradely-labeled motoneurons - confirming 
the existence of a direct monosynaptic projection. The role of the 
orofacial motor cortex during vocal production was then vali-
dated by quantifying the information between the vocalization 
amplitude and single cortical neuron activity measured wirelessly 
in vivo while the bats produced and listened to vocalizations. 

To create an atlas of open chromatin regions in the bat motor 
cortex (M1), several brain regions, including wing-M1 and orofa-
cial-M1, were separately dissected. The samples were cryo-
preserved, then the nuclei were isolated, and subsequently ATAC-
Seq was performed to measure open chromatin. The open chro-
matin regions from this experiment were combined with previ-
ously published experiments in macaque, rat (23), and mouse (21) 
to create an atlas of cross-species motor cortex open chromatin. 

To find vocal learning-associated convergent evolution in non-
coding regions of the Boreoeutherian mammalian genome, the 
TACIT machine learning approach, was applied. Orthologous re-
gions across genomes were found by combining the CACTUS 
whole genome multiple sequence alignment (19), halLiftover (93) 
and HALPER (94). Phyloglm (72) was then used to associate pre-
dicted motor cortex and parvalbumin-positive inhibitory inter-
neuron open chromatin with binary annotations of vocal learning 
behavior. Phylogenetic permutations were applied to correct for 
phylogenetic tree structure and Benjamini-Hochberg to correct 
for multiple hypothesis testing. To identify potential trends in the 
cell type-specificity of the implicated regions, permutations on 
the regions of the genome that were predicted to have signifi-
cantly higher or lower open chromatin in vocal learning species 
were conducted. 
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Fig. 1. Convergent changes in protein sequence associated with vocal learning evolution across 215 mammalian 
species. (A) A cladogram of mammalian species whose genomes were analyzed in this study highlights the convergent 
evolution of vocal learning species (in red) relative to non-learners (in black). The phylogenetic tree used in our analyses 
was derived from (97). Each of the genes implicated by RERconverge with lower (B) or higher (C) evolutionary rates in 
vocal learners are annotated based on whether or not they show a significant signature within the four vocal learning 
clades based on a Bayes factor ≥ 5 (18). All significant gene ontology categories (adjusted p < 0.10, EnrichR) are plotted 
for the 200 genes with conserved (D) and accelerated (E) selection in vocal learning clades, based on the combination of 
RERconverge and HyPhy RELAX. The points are colored by the odds ratio within the set of implicated genes relative to 
the genes outside of the set, which corresponds to the degree of enrichment within that set. 
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Fig. 2. Identification of an anatomically specialized motor cortical region targeting laryngeal motoneurons in the Egyptian 
fruit bat. (A) Right: schematic of anatomical tracing approaches. Retrograde tracer cholera toxin B (CTB, purple) was injected 
bilaterally into the cricothyroid muscles to label brainstem motoneurons in nucleus ambiguus (NA). Simultaneously, an 
anterograde viral tracer (channelrhodopsin-2, ChR2, or Synapsin/synaptophysin dual-label, SYN; green) was injected bilaterally 
into the orofacial motor cortex (ofM1) to label corticobulbar projections into NA. Left: example coronal section showing cortical 
injection sites with anterograde tracer (ChR2, green) and DAPI labeling (cyan). (B to F) Laryngeal motoneurons in the NA 
identified using a retrograde tracer (CTB, purple), cortical fibers labeled with ChR2 (green), corticobulbar synapses labeled with 
VGLUT1 (red), and DAPI (blue). (B) and (C) are overlaid images showing colocalization of fibers with a synaptic bouton on the 
retrograde labeled cell (white arrow). (G) Percentage of laryngeal motoneurons labeled with CTB that are colocalized with 
cortical fibers (blue) or with both cortical fibers and synaptic boutons (red). Note that both tracing techniques qualitatively 
yielded similar results: ChR2, n = 51 cells from 3 bats; Synapsin/synaptophysin dual-label virus (SYN), n = 26 cells from 2 bats. 
(H) Illustration of the experimental setup during which wireless electrophysiological recordings were conducted from the 
identified cortical region in freely behaving and vocalizing bats. (I) Spiking activity of an example ofM1 neuron aligned to the 
onset of vocalizations produced (bat’s own calls, orange) or heard (other bats’ calls, blue) by the bat subject. Top row, time 
varying mean firing rate and corresponding raster plot below. Colored lines in the raster plot show the duration of each 
vocalization. Note the increased firing rate during vocal production as compared to hearing. (J) Information (see Methods) 
between the time varying firing rate and the amplitude of produced (x-axis) vs. heard (y-axis) vocalizations for 219 single units 
(marker shapes indicate bat ID, n=4 bats). The cell shown in (I) is highlighted in red. Inset shows the distribution of D-prime 
between motor and auditory information for the same cells. Note that the distribution is heavily skewed toward higher motor 
information rather than auditory information coded in the activity of the recorded neurons. Error bars are mean +/− SEM 
throughout the figure. 
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Fig. 3. Differential Open Chromatin in Bat Orofacial M1 relative to Wing M1. (A) Open chromatin 
was profiled from 7 dissected brain regions of Egyptian Fruit bats. (B) Volcano plot of ATAC-seq OCRs 
with differential activity between the orofacial and wing subregions of primary motor cortex (ofM1 
and wM1, respectively) of Egyptian fruit bat. (C) Genome browser showing ofM1 and wM1 ATAC-
seq traces at the 3′ end of the FOXP2 locus. Reproducible M1 open chromatin regions (OCRs) are 
indicated in blue, with a differentially active OCR in ofM1 relative to wM1 highlighted in red. 
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Fig. 4. Vocal learning-associated convergent evolution in motor cortex open chromatin regions implicates specific 
neuron subtypes. (A) Overview of applying the Tissue-Aware Conservation Inference Toolkit [TACIT (23)] approach to 
vocal learning. OCRs (left) identified in motor cortex (M1). Measured open chromatin from M1 (4 species) were used to 
train convolutional neural networks (CNNs) to predict M1 open chromatin from sequence alone. Red bars and 
corresponding arrows indicate the presence of a peak while the blue bars represent the absence. The same OCRs were 
then mapped across 222 mammalian genomes (left) and the identified sequences were used as input to the CNNs to 
predict open chromatin activity. TACIT identified OCRs whose predicted open chromatin across species was significantly 
associated with those species’ vocal learning status. (B and C) The 4-way Venn diagrams represent the number of OCRs 
implicated by TACIT (both M1 and PV+) as displaying low (B) or high (C) activity in each of the vocal learning clades based 
on a t test. (D) The heatmap visualizes specific open chromatin regions along the rows (predicted higher in vocal learners 
in green; predicted lower in vocal learners in purple) across 222 mammals in the columns (vocal learner in red, vocal non-
learner in black, insufficient or conflicting evidence in gray). The color in each cell corresponds to the z-scored predicted 
open chromatin, with low open chromatin in blue, mean open chromatin in white, and high open chromatin in red. For 
open chromatin regions predicted to be significantly less (E) or more (F) open in vocal learning species (p<0.05), the red 
point shows the number of overlapping regions (y-axis) across mouse cortical cell types (x-axis). The bar-plot shows the 
distribution across 1,000 permutations of the peaks implicated by TACIT. The notches extend 1.58 * IQR / sqrt(n), which 
gives a roughly 95% confidence). 
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