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Abstract

Studies of fertilization biology often focus on sperm and egg interactions. However, before

gametes interact, mammalian sperm must pass through the cumulus layer; in mice, this consists

of several thousand cells tightly glued together with hyaluronic acid and other proteins. To

better understand the role of cumulus cells and their extracellular matrix, we perform proteomic

experiments on cumulus oophorus complexes (COCs) in house mice (Mus musculus), producing

over 24,000 mass spectra to identify 711 proteins. Seven proteins known to stabilize hyaluronic

acid and the extracellular matrix were especially abundant (using spectral counts as an indirect

proxy for abundance). Through comparative evolutionary analyses, we show that three of these

evolve rapidly, a classic signature of genes that influence fertilization rate. Some of the selected

sites overlap regions of the protein known to impact function. In a follow-up experiment, we

compared COCs from females raised in two different social environments. Female mice raised in

the presence of multiple males produced COCs that were smaller and more resistant to dissociation

by hyaluronidase compared to females raised in the presence of a single male, consistent with

a previous study that demonstrated such females produced COCs that were more resistant

to fertilization. Although cumulus cells are often thought of as enhancers of fertilization, our

evolutionary, proteomic, and experimental investigations implicate their extracellular matrix as

a potential mediator of fertilization outcomes.

Summary sentence

Cumulus cell protein identification reveals potential roles in fertilization outcomes.
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Introduction

Fertilization success depends on a diversity of molecular interactions.
Almost ten years ago, reproductive biologists began to appreciate
the roles of cumulus cells in fertilization. These cells surround
mammalian oocytes and can induce physiological changes in sperm
that make them capable of fertilization [1] and enhance fertility
through a variety of mechanisms [2, 3].

Importantly, sperm must penetrate the layer of cumulus cells
prior to reaching the ovum. In mice, cumulus cells number in the
thousands [4] and form a tightly packed layer glued together by
female-derived hyaluronic acid and a variety of proteins and sugar
molecules [5–7]. Mouse sperm contain at least two hyaluronidases
and multiple proteases that are released upon contact with cumulus
cells, dissociating them to expose a path to the ovum [8, 9].

Unfortunately, very little is known of the global proteome of the
cumulus-oophorus complexes (COCs), which include both oocytes
and cumulus cells. Here, we characterize the global COC proteome
through cell fractionation and identify a small set of highly abundant
proteins involved in extracellular matrix formation, some of which
- ITIH1, ITIH3, and VTN - show signatures of recurrent adaptive
evolution. In a second follow-up experiment, we show that female
mice raised in the presence of multiple males produced COCs that
were smaller and more resistant to dissociation by hyaluronidase,

consistent with a previous study that demonstrated such females
ovulated oocytes that were more resistant to fertilization [15]. Our
combination of proteomic, evolutionary, and experimental studies
suggest that a subset of the COC proteome may evolve under sexual
conflict, whereby cumulus cells slow down fertilization rather than
enhance it.

Materials and methods

All procedures and personnel were approved by the University of
Southern California’s Institute for Animal Care and Use Committee
(protocols #11394 and #11777), and the University of Western
Australia’s Animal Ethics Committee (approval 03/100/1456).

Cell collection and protein identification

To identify proteins from different cellular compartments, we used
a fractionation-based protein extraction method to isolate cyto-
plasmic, nuclear, and membrane associated proteins from COCs.
Female mice (strain = FVB/NJ) were induced to ovulate as previously
described [137, 15, 133]. We used FVB/NJ in order to collect multiple
COCs from genetically identical females. Briefly, we injected female
mice with 5 IU pregnant mare serum gonadotropin (PMSG) followed
48 hours later with 5 IU human chorionic gonadotropin (hCG).
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Twelve hours after hCG injection, we dissected COCs into 1 mL
of PBS. We snap-froze COCs in an empty microcentrifuge tube.
It is possible that artificial induction of ovulation shifts the COC
proteome compared to natural ovulation, but we required large
amounts of cells at a single collection time. For this fractionation
experiment, entire COCS were homogenized, without separation of
cumulus cells from oocytes.

Fractionation and mass spectrometry were performed by ITSI
Biosciences, using their ProFEK kit. Samples were reduced using
5 mM TCEP and alkylated using 55 nM iodoacetamide, cleaned with
a ToPREP kit, and desalted with the ZipTip kit. Desalted fractions
were dried and resuspended in 2% acetonitrile/0.1% formic acid,
then loaded onto a Thermo Surveyor HPLC system. Peptides were
eluted from the column using a linear acetonitrile gradient from 2 to
30% acetonitrile over 120 minutes followed by high and low organic
washes for another 20 minutes, into an LTQ XL mass spectrometer
(Thermo Scientific) via a nanospray source with voltage 1.8 V at
180◦. A data-dependent Top 5 method was used where a full MS
scan from m/z 400–1500 was followed by MS/MS scans of the five
most abundant ions. Each ion was subjected to collision-induced dis-
sociation. Raw data were searched against the UnitProt M. musculus
database using Proteome Discoverer 2.2 (Thermo Scientific) and the
Sequest HT algorithm.

In a follow-up experiment, we tested the effect of different
social environments on COC proteomes, detailed below. To focus on
proteins most likely to interact with sperm, we isolated cell surface
proteins from cumulus cells after removing oocytes. We collected
COCs as above, but then dispersed them using 5 μL of 1 mg/mL
hyaluronidase (Sigma, St. Louis MO) and gently swirling the mixture
to isolate cumulus cells from oocytes. We used the Pierce Cell Surface
Protein Isolation kit (Catalog # 89881, Thermo Fisher Scientific) to
biotinylate proteins on the surface of live cumulus cells before lysing
them and affinity-purifying the labeled proteins using streptavidin
agarose. We concentrated the proteins with a centrifugal 10 K filter,
ran them in a single lane of a 12% SDS-PAGE gel at 60 mA for
1 hour to avoid protein separation and cut the single band out for
downstream mass spectrometry as described above.

Comparisons to other datasets

We compared our proteomic data to a previously published microar-
ray transcriptome data generated from mouse COCs [16], submitted
to the gene expression omnibus (https://www.ncbi.nlm.nih.gov/geo/)
under GSE47967.

In that study, COCs were dissected from mouse ovaries and
gene expression of cumulus cells was analyzed from intact COCs
(their sample “COC”) or after surgically removing the oocytes from
COCs (their sample “OOX”). Cells were cultured for 20 hours prior
to analysis of gene expression of cumulus cells. We tested whether
the genes we identified here were highly expressed in that dataset,
relative to the rest of the genome. We quantified gene expression
using the Robust Multichip Average method of the Affymetrix
Expression Console, as implemented in the limma package in R
[17, 18].

Our fractionation experiment aimed to isolate proteins from the
cytoplasm, membrane, and nuclear components of COC. We tested
whether these cellular components were significantly enriched using
Panther GO-SLIM annotations and tools at http://pantherdb.org
v.14.0 [19]. For proteins identified in the fractionation experiment,
we first assigned proteins to one of these three compartments based
on the greatest number of spectra that identified them. Statistical

significance (P < 0.05) was determined using a Fisher’s exact test,
with correction for false discovery rate.

Social manipulation

In a second follow-up experiment, we tested whether female mice
produce COCs with unique proteomic characteristics depending on
their social environment. A prior study by Firman and Simmons
[15] showed that female mice raised in the presence of many males
produced COCs that were more resistant to fertilization in vitro,
suggesting females can dynamically adjust fertilizability based on
their social environment. Following their methodology, we trapped
wild house mice from Rat Island off the coast of Western Australia
and bred them in facilities at the University of Western Australia for
two generations.

At 21 days of age, F2 offspring from six distinct parental pairs
were weaned, and full sisters were randomly placed into one of two
treatments: (1) females exposed to ten males and thus developing
under a “risk” of sperm competition, and (2) females exposed
to a single male and thus developing under “no-risk” of sperm
competition. In both treatments, females were caged individually.
Risk females were positioned next to singly housed sexually mature
males. In a separate room, no-risk females were positioned next to
singly housed sexually mature females. Risk females received mixed
soiled chaff donated from 10 sexually mature males once per week
for 8 weeks, while no-risk females received soiled chaff from the same
male once every two weeks over the same time period. To control for
chaff manipulation, no-risk females received clean chaff on the weeks
when they did not receive soiled chaff.

Every two weeks, females of both treatments received supple-
mentary visual, audio, and pheromonal cues. Caged females were
placed inside a large plastic tub and encountered a sexually mature
individual that had been released into the tub. For 30 minutes,
this male roamed freely within the tub and could interact with
the female through the wire mesh lid of her cage. Females in the
risk treatment encountered a different male each time, while no-
risk females only encountered another female. These exposures were
aimed at introducing a more tactile cue by which females may per-
ceive a different number of males in the population complementary
to receiving soiled chaff. In total, we generated 12 risk and 12 no-
risk females. Following 8 weeks of differential male exposure, we
induced ovulation as described above, but with 2.5 U PMSG and
hCG, collected COCs, and performed proteomics.

Resistance to hyaluronidase

Sperm must pass through the cumulus cells to reach the egg, and
they contain two different hyaluronidases that disperse the cells.
Consequently, the density and cohesion of cumulus cells could be
a mechanism that accounts for plasticity in ovum fertilizability [15].
For COCs collected from the social manipulation experiment, we
monitored the rate at which COCs dispersed upon exposure to
hyaluronidase prior to proteomic investigations. We considered the
rate of dispersion to be a proxy for COC resistance to hyaluronidase.
Although we did not directly test the fertilizability of the COCs
collected here, we note that Firman and Simmons [15] previously
demonstrated risk females produced eggs that were more resistant to
fertilization, using the same social manipulation design. We placed
dissected COCs into 1 mL of PBS and added 5 μL of 1 mg/mL
hyaluronidase, then obtained an image every 5 seconds for 5 minutes.
Using the magnetic lasso tool in Adobe Photoshop CC 2019, we
traced the area occupied by cumulus cells. All images were analyzed
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blind to treatment. In a few cases, COCs drifted partially out of
view during the time-lapse imaging, so we manually estimated the
proportion off-screen to adjust the measurements, again done blind
to treatment. As cumulus cells dissociate, the 2D area they occupy
under a microscope expands. We wrote custom scripts in R version
3.5.1 [18] to analyze the rate of expansion as a proxy for resistance
to hyaluronidase. In general, the area of a cumulus mass increased
linearly then reached an asymptote after all cells were dissociated,
usually within a minute of adding hyaluronidase. We estimated
the rate of area increase during this first minute as the slope of a
linear model of cumulus area as a function of time, using the model
lm(area ∼ time). Then, we tested whether these slopes varied by
treatment using a weighted t test.

Evolutionary analyses

Proteins involved in fertilization outcomes often undergo recurrent
positive selection [20]. To identify COC proteins that are evolving
under recurrent positive selection, we performed three different
evolutionary comparisons, employing identical methods but for dif-
ferent sets of species. First, we identified one-to-one orthologs shared
across seven species, using the Biomart tool of Ensembl version 96
[21]. The seven species included rabbit (Oryctolagus cuniculus) build
OryCun2.0, thirteen-lined ground squirrel (Ictidomys tridecemlinea-
tus) build SpeTri2.0, guinea pig (Cavia porcellus) build Cavpor3.0,
kangaroo rat (Dipodomys ordii) Dord_2.0, rat (Rattus norvegicus)
build Rnor_6.0, mouse (Mus musculus) build GRCm38.p6, and
Chinese hamster (Cricetulus griseus) build CHOK1GS_Hdv1. We
used the phylogenetic tree of Upham et al. [22]. Of 711 proteins
identified across all eight of our proteomic experiments described
above, 329 had one-to-one orthologs across all seven species.

Second, we repeated the above analysis after excluding kan-
garoo rat. Upon further inspection, we were concerned about the
incomplete sequence data in this reference genome. Of 711 COC
proteins identified in the fractionation experiment, 365 had one-to-
one orthologs across all six species.

For both the seven-species and the six-species analyses, we down-
loaded protein and coding sequences from Ensembl version 96,
aligned proteins using muscle [23, 24], then associated aligned
proteins to their coding sequences using RevTrans [25]. For genes
with multiple isoforms, we chose the longest transcript. Genes with
fewer than 100 codons present across all species in the alignment
were excluded. Then, we fit the M7, M8, and M8a models of
evolution [26, 27] using the codeml tool in PAML software version
4.9 [28]. The M7 model estimates the ratio of nonsynonymous to
synonymous divergence (dN/dS) across codons, with the distribution
of dN/dS fit to a beta distribution with the constraint that no dN/dS

class above 1 is allowed. The M8 model relaxes this constraint and
estimates an additional dN/dS class, as well as a proportion of codons
assigned to that class. Twice the difference in log-likelihoods of M7
vs. M8 was tested against a X2 distribution with degrees of freedom
equal to the difference in the number of parameters of the two nested
models (likelihood ratio test), in this case df = 2. To test if the
additional dN/dS class estimated by the M8 model was significantly
greater than 1 (an indication of recurrent positive selection), we
compared M8 to the M8a model, which simply fixes the additional
class of dN/dS = 1. We compared the M8 to M8a models using a
likelihood ratio test with df = 1. Elevated dN/dS is an indication
that nonsynonymous mutations—assumed to have more functional
impact than synonymous mutations—sweep through species more
often than neutral expectations.

In a third analysis, we focused on a shallower evolutionary
timescale, using 11 mouse species (Mus platythrix, M. pahari, M.
minutoides, M. caroli, M. cervicolor, M. cookii, M. spretus, M. spicile-
gus, M. macedonicus, M. m. musculus, and M. m. domesticus), taken
from a set of “pseudoreference” sequences generated by Sarver et al.
[29]. Briefly, that study used an iterative mapping approach to insert
species-specific variants into the C57BL/6 J reference genome. In
the construction of pseudoreferences, some sites will not be covered
for a particular species, either because those sites are missing (e.g.,
due to insertion–deletion events) or due to experimental noise (e.g.,
sequencing efficiency and accuracy). Any sites that were not covered
by at least one species were masked in all species and excluded
from all downstream analyses. This approach retains the genomic
coordinates of the C57BL/6 J reference genome, thus facilitating
downstream analyses that rely on annotation. Phylogenetic relation-
ships and branch lengths were taken from Sarver et al. [29].

Following Dean et al. [30], we considered a gene adaptively
evolving if (1) the M8 model fit the data better than M7 at P < 0.05,
where P-values were adjusted for multiple comparisons using the
Benjamini–Hochberg approach [31], (2) the M8a model fit the
data better than M8 at P < 0.05, where P-values were adjusted
for multiple comparisons using the Benjamini–Hochberg approach
[31], and (3) at least three codons occurred in this additional class
of dN/dS. Specific codons experiencing recurrent positive selection
were those identified with Bayes Empirical Bayes probability >0.9
[32].

Results

711 proteins identified from COCs, with high spectral

counts generated from seven proteins involved in the

formation and stabilization of extracellular matrix

Across all proteomic experiments, we mapped 24,030 spectra to
711 proteins (Table S1). We mapped each protein with a mean
(median) of 33.8 (10) spectra. Eight of these were keratins and were
excluded from downstream analyses since they are likely to represent
contamination.

The number of spectra generated per protein was very skewed.
Inter-alpha trypsin inhibitor, heavy chain 1 (ITIH1) was the protein
identified with the most spectra (identified with 1,368 spectra), with
more than twice as many spectra as the second highest (ITIH3, iden-
tified with 683 spectra) (Table S1). Because these two proteins play
important roles in the formation and stabilization of extracellular
matrix [33], we investigated in more detail five additional proteins
found in extracellular matrix: ITIH2, pentraxin-related gene (PTX3),
tumor necrosis factor alpha-induced protein 6 (TNFAIP6), versican
(VCAN), and vitronectin (VTN). Together, these seven proteins
accounted for over 13% of all spectra generated. However, it should
be noted that we did not detect two other extracellular proteins—
bikunin (a protein derived from Ambp) and aggrecan (ACAN)—
known to be present in COC.

In the social manipulation experiment, we only identified 17
proteins from no-risk females and 18 from risk females, 12 of which
were present in both groups (Table S1). The number of proteins
identified was much smaller than expected, which is probably due
to unexpectedly small yield of COC following artificial induction of
ovulation in these relatively older and wild-derived animals, as well
as the dispersal of cumulus cells during the hyaluronidase resistance
experiments.
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Table 1. Gene ontology analyses of cellular compartment. Columns are the major cellular components targeted in our study (annotated

GO term in parentheses). Rows indicate the three compartments of the fractionation experiment, plus our attempt to isolate membrane

proteins from the social experiment (number of genes identified in each proteomic experiment in parentheses). Numbers in cells indicate

number of proteins identified from particular fractions, which are annotated with that particular GO term. + or − indicate statistically

significant enrichment or paucity, respectively.

Proteome fraction Membrane
(GO:0016020)

Nucleus
(GO:0005634)

Cytoplasm
(GO:0005737)

Cytosol
(GO:0005829)

Extracellular
region

(GO:0005576)

Extracellular
matrix

(GO:0031012)

Membrane fraction (N = 209) 62 (+) 0 87 (+) 0 0 0
Cytosolic fraction (N = 244) 22 (−) 0 135 (+) 59 (+) 0 0
Nuclear fraction (N = 225) 10 (−) 84 (+) 100 (+) 55 (+) 3 (−) 0
Social experiment (N = 22) 0 0 0 0 0 0

Comparison to other datasets confirms these are likely

bonafide COC proteins

From 703 non-keratin genes identified, 650 could be matched to
a previously published microarray expression dataset from mouse
cumulus cells [16]. Those 650 genes showed significantly higher
expression in cumulus cells isolated from both COC (cumulus cells
plus oocytes) and OOX (cumulus cells only) [re-analysis of data
from 16] (median signal intensities = 8.42 vs. 5.59 [8.67 vs. 5.59]
compared to the other 21,073 genes identified among COC [OOX]
samples; Wilcoxon rank sum test for both comparisons, P < 10−15).
In other words, the proteins we identified here were highly expressed
in a previous study of COCs, lending support to the hypothesis that
we identified bonafide COC proteins. In addition, we identified 42%
of the 625 proteins found in a previously published mouse oocyte
proteome, which did not include cumulus cells [34].

Our fractionation experiment targeted three main cellular
compartments. Proteins from the membrane fraction were sig-
nificantly enriched for the “membrane” annotation, while none
were annotated as “nucleus,” or “cytosol” (Table 1). Proteins
identified from the cytosolic fraction were significantly enriched
for “cytosol,” significantly depauperate for “membrane,” with
none annotated as “nucleus” (Table 1). Proteins identified from
the nuclear fraction were significantly enriched for “nucleus,”
“cytoplasm,” and “cytosol,” while significantly depauperate for
“membrane” (Table 1). In sum, proteins isolated from different
fractions matched expected Gene Ontology annotations well.

For the social manipulation experiment, we attempted to isolate
cell surface proteins. However, neither “membrane” nor “extracellu-
lar region” genes were significantly enriched, which is likely due to
the small number of proteins identified in our social manipulation
experiment.

Evolutionary analyses identify several extracellular

matrix proteins that evolve under recurrent positive

selection

We identified 20 adaptively evolving proteins from at least one of
the three sets of species (Tables S2, S3, and S4, respectively). No bio-
logical processes or molecular functions were significantly enriched
among the 20 adaptively evolving genes, using either the whole
genome as background or the 703 COC proteins as background.
However, several interesting annotations emerged upon manual
inspection. Three adaptively evolving genes were related to extra-
cellular matrix formation and stabilization (Itih1, Itih3, Vtn), three
had immunity function (Dhx9, Vtn, Zp3), eight were related to
regulation of transcription or translation (Dhx9, Dnmt1, Hnrnpd,

Itga2, Prpf19, Psmc3, Syncrip, Ybx1), and four play some role
in gamete biology (Apoa1, Pebp1, Prdx1, and Vtn). Several genes
appeared in more than one of these functional categories.

As pointed out above, a subset of seven proteins that help
form and stabilize the extracellular matrix yielded particularly high
spectral counts, suggesting they are abundant. Three of these seven
(ITIH1, ITIH3, and VTN) have experienced recurrent positive selec-
tion (Table S1). For ITIH1, we identified a single codon as positively
selected in both the 6-species and 7-species alignments. This codon
falls five residues distal to a known proteolytic cleavage site [35],
and 22 residues proximal to the Asp residue that covalently bonds
to hyaluronic acid [33, 36] (Figure 1). In the Mus-only alignment,
ten codons were identified as positively selected; these were more
dispersed throughout the protein but include a site just eight amino
acids proximal to this same proteolytic site (Figure 1).

For ITIH3, we identified six codons experiencing recurrent pos-
itive selection from the 6-species and 7-species alignments. Three
of these positively selected codons fell within the Von Willebrand
factor type A domain (VWA) annotated from this protein (domain
#PF00092 from Pfam database version 33.1), a fourth fell within
the Inter-alpha-trypsin inhibitor heavy chain C-terminus (ITI_HC_C,
#PF06668), and the remaining two fell in a region between the VWA
and the same proteolytic site discussed for ITIH1 above (Figure 1).
The Mus-only alignment did not identify recurrent positive selection
for ITIH3. It is interesting to note that a third protein in the ITIH
family, ITIH2, barely missed the cutoff for statistical significance,
with model M8 fitting the data better than M7 at near significance
(uncorrected P = 0.07). There was a single codon identified as poten-
tially positively selected, which occurred distal to the proteolytic site
mentioned above (Figure 1).

For the extracellular protein VTN, we identified 12 codons under
recurrent positive selection across the 6-species, 7-species, and Mus-
only alignments. Two fell within a hemopexin domain (PF00045),
but the rest do not fall within any annotated domains from this
protein or known proteolytic cleavage sties [37]. These codons tend
to fall within the proximal third of the protein, somewhat close the
tripeptide Arg-Gly-Asp (RGD), which is the site that binds to the
VWF of ITIH1 and ITIH2 [38], but the potential functional impact
of this divergence is unclear.

Risk females produced COCs that were smaller and

more resistant to hyaluronidase

Under ideal conditions, two large COCs can be isolated from a
single female, one from each oviduct. However, these often split up
into smaller clusters during dissection. Therefore, we analyzed rates
of dissociation with a one-tailed weighted t-test, where exposure
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Figure 1. General structure of the ITIH proteins. Four boxes indicate four annotated domains that all three ITIH proteins identified here contain: S = signal

peptide, VIT = vault protein inter-alpha-trypsin domain (#PF08487), VWA = Von Willebrand factor type A domain (#PF00092), ITI_HC_C = inter-alpha-trypsin

inhibitor heavy chain C-terminus (#PF06668). Two additional sequences are highlighted: DPHFII = six amino acid motif that all three ITIH proteins contain. The

superscripted character indicates a post-translational cleavage site that exposes the D residue that eventually becomes covalently linked to either chondroitin

sulfate or hyaluronic acid (as described in the Discussion). GPRRTF = six amino acid motif present only in ITIH1; the subscripted character indicates the cut site

of thrombin [see ref 35]. Numbers below gene model indicate codons identified as experiencing recurrent positive selection for each of the three ITIH proteins

(1 = ITIH1, 2 = ITIH2, 3 = ITIH3). Red numbers result from 6-species or 7-species alignments, black numbers result from Mus-only alignments.

treatment (risk vs. no-risk) was the main effect and each cumulus
mass was down-weighted by the number of clusters collected per
female. COC clusters from risk females dissociated significantly
more slowly than those from no-risk females (Figure 2), as measured
by the rate of area expansion in the first minute following addition
of hyaluronidase (weighted t = 3.70, df = 2.31, P = 0.001; Figure 3).
This result held if we performed a non-parametric Wilcoxon rank
sum test (P < 0.001) instead of a weighted t-test.

We also tested whether the initial area of the COCs (normalized
by the number of ova in each COC) differed. COC from risk
females had significantly smaller initial area compared to no-risk
females (weighted t = 4.43, df = 2.41, P = 0.0001; Figure 4). As
a consequence, the rate of area expansion in COC clusters from
risk females might be underestimated (in the trivial case of a COC
with no cumulus cells, we would estimate a rate of expansion close
to zero). Upon further examination, the maximum amount of area
expansion from risk cumulus clusters was approximately 150% of
the starting area (Figure S1), while ten cumulus clusters from no-risk
females expanded beyond 150%. We therefore repeated the analysis
after excluding all cumulus clusters that expanded more than 150%,
which produced qualitatively identical results (weighted t = 1.76,
df = 12.50 P = 0.05). Therefore, we conclude that COCs from risk
females were both smaller in initial size and were more resistant
to hyaluronidase compared to than COCs from no-risk females.
In sum, our proteomic and evolutionary analyses above point to
the extracellular matrix as a potential influence on fertilization
outcomes, while our social manipulation experiment suggests this
matrix can be dynamically adjusted based on the environment of an
individual female.

Discussion

Cumulus cells perform a number of important functions, includ-
ing the formation of gap junctions, the transfer of nutrients and
hormonal signals to oocytes [39, 40], and the alteration of sperm
physiology [1, 41–56]. Generally, these functions are described as
promoters of fertilization [1, 2, 57–59]. Through a combination of
proteomic, evolutionary, and experimental analyses, we present a
complementary hypothesis, that a subset of COC proteins involved
in the formation and stabilization of extracellular matrix may have
evolved as a mechanism for females to modulate (i.e., slow down)
fertilization outcomes.

Figure 2. (A) After adding hyaluronidase, tightly packed COC begin to dis-

sociate. The three columns contain images of COCs ∼0, 2.5, or 5 minutes

after exposure to hyaluronidase. The two rows show a characteristic COC

from no-risk vs. risk females (specimens NR3_F3 and R3_F7, respectively).

The COC from the risk female expanded more slowly; notice the dense cluster

of cumulus cells that remain even after 2.5 minutes. In contrast, the no-

risk COC was fully dissociated by this time and the eggs clearly visible. (B).

We estimated the rate at which COC dissociate by fitting a line through the

first 1 minute’s worth of areas measured after adding hyaluronidase (blue

line). The two line plots are the same two specimens as in A, no-risk female

represented by diamonds, risk female represented by circles.

Our hypothesis stems from three main insights. First, seven pro-
teins known to play critical roles in the formation and stabilization
of extracellular matrix (ITIH1, ITIH2, ITIH3, PTX3, TNFAIP6,
VCAN, and VTN) together accounted for more than 13% of all
spectra generated from a total of 711 proteins, suggesting a large
component of the COC proteome acts to control access to eggs.
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Figure 3. COC of no-risk females dissociate more rapidly than risk females.

Second, three of these proteins (ITIH1, ITIH3, and VTN) showed
evidence of recurrent positive selection (with ITIH2 just missing our
statistical cutoff), a common signature among proteins that influence
fertilization rates. Codons experiencing recurrent positive selection
tended to fall near functionally important sites, as discussed further
below. Third, our social manipulation experiment demonstrated that
Risk females produced COCs that were smaller and more resistant
to hyaluronidase, offering a possible mechanism for previous obser-
vation that females can adjust their ovum fertilizability [15].

The extracellular matrix of COC

An extracellular matrix enmeshes mammalian COC, acting like
a glue to tightly pack cumulus cells around the egg. The main
component of this extracellular matrix is hyaluronic acid, produced
by cumulus cells [5, 7, 60, 61] in combination with serum-derived
factors that prevent the hyaluronic acid from “leaking” out of the
COC [7, 62]. We detected seven of these factors—ITIH1, ITIH2,
ITIH3, PTX3, TNFAIP6, VCAN, and VTN—at high spectral counts,
but did not detect two others—bikunin, a protein derived from
Ambp, and ACAN known to be present in extracellular matrix.

The three ITIH proteins were the top three (of 711 proteins)
in terms of spectral counts identified, suggesting they are abun-
dant. All three ITIH proteins are post-translationally cleaved after
the aspartic acid residue in a DPHFII sequence that is identical
across all three proteins (Figure 1). This exposes the aspartic acid
residue, which becomes covalently bound to hyaluronic acid via
three related molecular processes [33, 63, 64]. First, inter-α-inhibitor

(IαI), a complex of the three proteins—bikunin, ITIH1, and ITIH2
all covalently bound to a single chondroitin sulfate chain—enters
newly ruptured follicles and associates with the COC extracellular
matrix [65–75]. ITIH1 and ITIH2 can remain associated with IαI,
but the protein TNFAIP6 also acts to transfer the ITIH1 and ITIH2
proteins from the chondroitin sulfate chain of IαI to covalently bind
directly to hyaluronic acid [75–82]. Second, pre-α-inhibitor (PαI), a
complex of two proteins—bikunin and ITIH3 covalently bound to
a single chondroitin sulfate chain—undergoes a very similar process
to covalently bind ITIH3 to hyaluronic acid [67, 70, 74, 75, 83, 84].
Third, TNFAIP6 covalently binds to hyaluronic acid and multiple
TNFAIP6 are held together via PTX3. All three processes have
the effect of stabilizing hyaluronic acid [33], and various knockout
experiments in mice have demonstrated these proteins are essential
for normal ovulation, COC formation, and fertility [85–90]. VCAN
also covalently binds to hyaluronic acid and ITIH1, and VTN binds
to ITIH proteins [36, 91], although their effect on the stabilization
of extracellular matrix is not well understood.

Does the extracellular matrix of COC play a

role in sexual conflict over fertilization rate?

Sexual reproduction almost always includes some level of conflict
between males and females [92]. All else being equal, selection favors
males that fertilize more quickly, especially given that females of
most species mate with more than one male in a single reproductive
cycle (including mice: [93, 94]). However, faster fertilization can be
deleterious for females if it inhibits cryptic female choice and/or
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Figure 4. The COC from no-risk females were larger at time = 0 minutes than risk females, probably because no-risk COC had more cumulus cells per oocyte

(see text).

increases the likelihood of fertilization by more than one sperm,
which is lethal in mammals [95, 96]. Therefore, selection is expected
to favor females that slow down or otherwise control fertilization
[92, 97], resulting in sexual conflict over the rate of fertilization
[92, 98].

Consistent with a model of sexual conflict, proteins involved in
direct sperm–egg interactions have been shown to undergo recurrent
adaptive evolution. Many sperm, seminal fluid, and egg coat proteins
have been shown to undergo recurrent positive selection [9, 20, 27,
30, 99–123], which is often concentrated in the actual functional
domains that influence sperm-egg binding [99, 100, 118, 123]. In
short, sexual conflict appears to fuel a coevolutionary arms race
between male and female fertilization proteins across many different
species, often described as an interaction between male offenses and
female defenses [20, 98]. This signature can be used to generate
hypotheses about which sites have functional impact.

Three of seven extracellular proteins involved in stabilization of
extracellular matrix (ITIH1, ITIH3, and VTN) showed a significant
signature of recurrent positive selection, with a fourth (ITIH2) just
missing our statistical cutoff. As discussed above, all three ITIH
proteins covalently bind to hyaluronic acid, through esterification
of a C-terminal aspartic acid residue that is exposed after a post-
translational cleavage event (Figure 1). Both ITIH1 and ITIH3 show
recurrent adaptive evolution in a region just upstream of this aspartic
acid residue, around a site known to be susceptible to cleavage
by thrombin (Figure 1). If these changes alter cleavage patterns in

this area, they could influence the rate at which ITIH is effectively
removed from their covalent bond to hyaluronic acid, potentially
compromising the integrity of the extracellular matrix [35, 36].

These patterns lead to the hypothesis that ITIH proteins modu-
late fertilization outcomes indirectly by stabilizing the extracellular
matrix and creating an obstacle for sperm. In this context, it is
interesting that COC proteins playing a more “supportive” role in
transferring ITIH proteins to hyaluronic acid, or which are simply
less abundant than ITIH proteins (for example, PTX3 and TNFAIP6)
do not show evidence of recurrent positive selection. Instead, only
the ITIH proteins, which appear to be very abundant and remain
covalently bound to hyaluronic acid, thus potentially interacting
with sperm and their enzymes, evolve rapidly.

If ITIH proteins evolve under a model of sexual conflict, what
are the male-derived proteins they are in conflict with? Sperm
contain at least two hyaluronidases (HYAL5 and SPAM1), which
are released upon contact with COC to degrade the extracellu-
lar matrix and expose a path to the egg [8]. Interestingly, these
hyaluronidases also evolve under recurrent positive selection [9–12],
perhaps reflecting coevolution with female-derived proteins like the
ITIH’s [13, 14, 124]. Sperm-derived hyaluronidases are not known
to directly act on the ITIH proteins, but sperm and seminal fluid
also contain a diversity of proteases and protease inhibitors [9, 110,
111] that could feasibly regulate degradation of the extracellular
matrix. Many of these also evolve under recurrent positive selection
[9, 110, 111]. Interestingly, a critical function of both the IαI and
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PαI protein complexes is as a protease inhibitor, consistent with
a possible role in resistance of the COC proteome to degradation
[33].

It should be noted that many of the proteins discussed here have
additional functions that also predict rapid evolution. For example,
the ITIH proteins and VTN also participate in immune regulation
[34, 36, 125–128], as well as protection from venom [129, 130].
As these proteins circulate in the serum of both males and females,
it is not surprising they have additional functions outside of COC
development. It is possible that host–pathogen or predator–prey
interactions drive at least some portion of the recurrent positive
selection observed in these ITIH proteins.

Risk females produced COC that were smaller and

more resistant to hyaluronidase

We also showed that females raised in the presence of multiple
males produced COCs, which were smaller and more resistant to
hyaluronidase compared to females raised in the presence of a single
male. This independent experiment further implicates the extracel-
lular matrix of the COC as a potential modulator of fertilization
rate, in this case one that is plastic with respect to an individual’s
environment [15, 131].

Unfortunately, we did not generate as many spectra as anticipated
from the socially manipulation experiment, likely a combination
of failed induction of ovulation as well as loss of proteins dur-
ing experimental exposure to hyaluronidase. For example, we did
not detect any of the ITIH proteins or their interacting proteins
in the social manipulation experiment. We therefore interpret the
proteomic results of this follow-up experiment with caution. Nev-
ertheless, the small number of proteins we detected suggests that
risk females reach sexual maturity at an earlier age than no-risk
females. We identified ENO1 and PKM only from risk females, both
of which correlate with a metabolic shift in the cumulus cells of older,
cycling females [132]. Conversely, we identified APOA1 only from
no-risk females, which has been associated with females that are yet
to reach sexual maturity [132]. Interestingly, artificial induction of
ovulation is known to fail more often in females that have already
begun natural estrus cycling [133], and roughly 50% of risk females
failed to ovulate in our social manipulation experiment. Therefore,
even though chronologic age was controlled in our experiment, risk
females may have been reproductively older and produced COCs
with different biological characteristics compared to no-risk females.
These results are consistent with findings that female mice exposed
to male urinary proteins and physical interaction with males reach
sexual maturity at an earlier age [134, 135]. In sum, it remains
unknown how much of the “plasticity” we observe in our social
manipulation experiment is due to differences in reproductive ageing
across treatments.

Conclusions

A large body of literature views cumulus cells as enhancers of fertil-
ization. Our study offers an alternative view, that the extracellular
matrix of the COC represents an important female-derived obstacle
to fertilization. A model of sexual conflict does well to explain these
patterns, including our finding that females raised in the presence
of multiple males produce COC with a more resistant extracellular
matrix.

In the future, it will be important to directly test the interactions
between female-derived and male-derived proteins and structures. If

sexual conflict drives the evolution of some of these proteins, then
fertilization outcomes should depend on the combination of female-
derived proteins that form and stabilize the extracellular matrix of
COC and the male-derived molecules that presumably break it down.
Ample genetic variation for all three ITIH proteins and the two
sperm hyaluronidases exists among various strains and species of
mice [136], enabling future direct tests of this hypothesis.
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