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Abstract

Identifying genomic elements underlying phenotypic adaptations is an important problem in evolutionary biology.
Comparative analyses learning from convergent evolution of traits are gaining momentum in accurately detecting
such elements. We previously developed a method for predicting phenotypic associations of genetic elements by con-
trasting patterns of sequence evolution in species showing a phenotype with those that do not. Using this method, we
successfully demonstrated convergent evolutionary rate shifts in genetic elements associated with two phenotypic
adaptations, namely the independent subterranean and marine transitions of terrestrial mammalian lineages. Our
original method calculates gene-specific rates of evolution on branches of phylogenetic trees using linear regression.
These rates represent the extent of sequence divergence on a branch after removing the expected divergence on the
branch due to background factors. The rates calculated using this regression analysis exhibit an important statistical
limitation, namely heteroscedasticity. We observe that the rates on branches that are longer on average show higher
variance, and describe how this problem adversely affects the confidence with which we can make inferences about rate
shifts. Using a combination of data transformation and weighted regression, we have developed an updated method that
corrects this heteroscedasticity in the rates. We additionally illustrate the improved performance offered by the updated
method at robust detection of convergent rate shifts in phylogenetic trees of protein-coding genes across mammals, as
well as using simulated tree data sets. Overall, we present an important extension to our evolutionary-rates-based

method that performs more robustly and consistently at detecting convergent shifts in evolutionary rates.
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Introduction

Understanding the relationship between phenotype and ge-
notype is a fundamental question in biological research. A
mechanistic characterization of this relationship hinges on
our ability to define how specific genetic elements contribute
to biological processes at the molecular, cellular, and organ-
ismal level. High-throughput sequencing has enabled new
experimental approaches that have uncovered a wealth of
genetic elements with putative regulatory roles across tissues
(ENCODE Project Consortium 2012; Andersson et al. 2014;
Romanoski et al. 2015). However, identifying the precise bio-
logical functions of these elements remains a challenge. Even
beyond noncoding elements, the precise biological roles of
many protein-coding genes are still poorly understood, and
many genes with statistical disease associations still lack a
mechanistic explanation (Pennacchio et al. 2013; Radivojac
et al. 2013; Sa et al. 2013; Shlyueva et al. 2014). While exper-
imental validation for functional annotation remains chal-
lenging, there is considerable interest in developing new
tools that can use existing data resources to further elucidate
the function of genetic elements. These approaches have the
potential to improve the diagnosis of disease susceptibility

and the development of therapeutic interventions (Manolio
et al. 2009; Esteller 2011).

Computational approaches learning from patterns of con-
vergent phenotypic evolution across species provide a com-
plementary approach to predict genotype—phenotype
associations. The natural world is replete with examples of
phenotypic convergence ranging from the independent evo-
lution of flight in birds and mammals to diving in species that
transitioned from a terrestrial to marine habitat to loss of
complex phenotypes such as eyesight in animals colonizing
the subterranean niche. Genome-scale studies aimed at iden-
tifying the genetic basis of phenotypic convergence take ad-
vantage of the growing availability of whole genome
sequences for species across several orders, alongside the de-
velopment of comparative methods to predict orthologous
sequences (Eisen 1998; Pellegrini et al. 1999; Li et al. 2014). A
common approach in such studies is to identify convergence
at the molecular level, including substitutions at specific nu-
cleotide or amino acid sites (Zhang and Kumar 1997; Parker
et al. 2013; Stern 2013; Foote et al. 2015; Thomas and Hahn
2015; Zou and Zhang 2015). An alternative strategy to inves-
tigate the genetic basis of convergence is to search for

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

Al rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Mol. Biol. Evol. 36(8):1817-1830  doi:10.1093/molbev/msz107 Advance Access publication May 11, 2019 1817

bAuN AQ G61.88YS/2181/8/9E10B1ISqE-0|ILE/AqW/WO0"dNO"dILSPEOE/:SANY WOI) PEPEOJUMO(

=
=
]
o,
®
>
o
®
(2]
c
=
=
©
S
<
o
@
@
=
o
=1
N
o
>
c
Q
=
@
a
N
o
=
©


Deleted Text: -
Deleted Text:  
Deleted Text: -

Partha et al. - doi:10.1093/molbev/msz107

MBE

convergent changes at the level of larger functional regions
rather than specific nucleotide or amino acid sites. Sets of
genes associated with a phenotype can respond to conver-
gent changes in the selective pressure on the phenotype
through nonidentical changes in the same gene, and as
such, sites-based methods can fail to detect them. These
limitations have encouraged researchers to search for conver-
gent shifts in evolutionary rates of individual protein-coding
genes and more recently conserved noncoding elements
(Lartillot and Poujol 2011; Hiller et al. 2012; Chikina et al.
2016; Marcovitz et al. 2016; Prudent et al. 2016). An increased
selective constraint can manifest as a slower evolutionary rate,
whereas faster evolutionary rates can result from a release of
constraint or from adaptation. Thus phenotypic associations
for genetic elements can be predicted from correlated
changes in their evolutionary rates on phylogenetic branches
corresponding to the phenotypic change. Example
approaches based on evolutionary rates include the
Forward/Reverse Genomics methods that have identified
protein-coding and noncoding genetic elements showing
convergent regression in subterranean mammals and loss
of limb-regulatory elements in snake lineages (Hiller et al.
2012; Marcovitz et al. 2016; Prudent et al. 2016; Roscito 2017).

We previously developed an evolutionary-rates-based
method to identify genetic elements showing convergent
shifts in evolutionary rates associated with two distinct phe-
notypic transitions (Chikina et al. 2016; Partha et al. 2017).
Our original method calculates gene-specific evolutionary
rates using a linear model, and gene-trait associations are
inferred using correlations of these rates with the phenotype
of interest. A genome-wide scan using this method to find
protein-coding genes associated with the transition to the
marine environment identified hundreds of genes that
showed accelerated evolutionary rates on three marine mam-
mal lineages (Chikina et al. 2016). These accelerated genes
were significantly enriched for functional roles in pathways
important for the marine adaptation including muscle phys-
iology, sensory systems, and lipid metabolism. More recently,
using our methods, we detected an excess of vision-specific
genes as well as enhancers that showed convergent rate ac-
celeration on the branches corresponding to four subterra-
nean mammals (Partha et al. 2017). Genes showing
convergent rate shifts associated with these two phenotypic
transitions typically follow one of the following modes of
change in the selective pressure—1) relaxation of constraint
and 2) positive selection. Marine-accelerated and
subterranean-accelerated genes identified in earlier scans
were further probed using phylogenetic models of selective
pressure to identify the underlying evolutionary process. In
both cases, we found an excess of genes under relaxed con-
straint, as well as a smaller number of genes under positive
selection. Overall, genome-scale efforts both from our group
and others to find genetic elements responding to convergent
changes in the selective pressures in their environment are
gaining momentum in accurately describing precise gen-
otype—phenotype associations.

Our original evolutionary-rates method has an important
statistical limitation, namely strong mean-variance trends in
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the computed evolutionary rates. The distributions of branch
lengths of gene trees in phylogenetic data sets are influenced
by the choice of species, divergence from the most recent
common ancestor, and species-specific properties, such as
generation time, in addition to gene-specific constraints on
the sequence evolution. These factors cause large differences
in the average lengths as well as the variance of the branch
lengths across the branches studied. In this article, we illus-
trate how this limitation can adversely impact the confidence
with which we infer phenotypic associations for genetic ele-
ments, in particular making them sensitive to certain factors
in phylogenomic analyses including choice of taxonomic
groups and average rates of sequence divergence on phylo-
genetic branches showing the convergent phenotype. We
demonstrate how introducing long branches in phylogenetic
trees via the inclusion of distantly related species impacts the
reliable estimation of evolutionary rates using gene trees
across mammals, as well using a first-of-its-kind model for
simulating gene trees. We present key improvements to
our methods that address these limitations and overcome
them. The next section New Approaches presents a detailed
walk-through of our current approach to calculate relative
evolutionary rates, the illustration of mean-variance trends
(heteroscedasticity) in these rates, and our methodological
updates that correct for the problem of heteroscedasticity in
the rates. We subsequently demonstrate the improved reli-
ability in relative rate calculations using our updated method,
and, more importantly, in the robust detection of convergent
rate shifts across a range of evolutionary scenarios in real and
simulated phylogenetic data sets.

New Approaches

Original Relative-Evolutionary-Rates Method for
Predicting Phenotypic Associations of Genetic
Elements

Our method infers genetic elements associated with a con-
vergent phenotype of interest based on correlations between
that phenotype and the rates of evolution of genetic ele-
ments. As input, the phenotype is encoded as a binary trait
on a phylogenetic tree, and the evolution of each genetic
element is similarly described by phylogenetic trees with
the same fixed topology. Figure 1 provides an illustration of
our method capturing the convergent acceleration of the
Lens Intrinsic membrane 2 protein Lim2 on four subterranean
mammal branches. We use maximum likelihood approaches
to estimate the amount of sequence divergence of each ge-
netic element on branches of the phylogenetic tree (Yang
2007). Using each tree’s branch lengths, we calculate the av-
erage tree across the individual trees reflecting the expected
amount of divergence on each branch. Relative evolutionary
rates (RERs) on individual trees are then calculated as the
residuals of a linear regression analysis where the dependent
variable corresponds to the branch lengths of individual trees,
and the independent variable corresponds to branch lengths
of the average tree. Thus the relative rates reflect the gene-
specific rate of divergence in each branch, factoring out the
expected divergence on the branch due to genome-wide
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Fic. 1. Predicting gene-trait associations using relative rates method. (A) Lens Intrinsic Membrane 2 (Lim2) protein-coding gene tree. Our
phylogenetic data set is comprised of trees constructed from alignments of protein-coding genes in the mammalian genome across 59 species
of placental mammals. (B) Relative rates on branches of phylogenetic trees are calculated using linear regression. (C) Gene-trait associations are
identified using correlations of relative rates of the gene with binary trait of interest.

effects (such as mutation rate and time since speciation). The
relative rates method works downstream of estimating the
trees, and hence considers protein-coding gene trees, non-
coding genetic element trees, and simulated gene trees equiv-
alently. For the sake of simplicity, we refer to the relative rates
on the branches of each tree as the gene-specific relative rate;
the term gene could in principle be referring to a protein-
coding gene, noncoding genetic element, or a simulated tree
depending on the data set being studied.

Estimating Mean—Variance Trends in Relative Rates

Our original method calculates the gene-specific rates by
correcting for the genome-wide effects on branch lengths
using linear regression. Consequently, the variance of the rel-
ative rates on individual branches strongly depends on the
average length of the branch, illustrated here using an exam-
ple protein-coding gene tree for MFNG, Manic Fringe
Homolog Drosophila (fig. 2A). We see that longer branches
have relative rates showing a higher variance, as can be in-
ferred from the increasing spread of the relative rates. This
pattern becomes clearer when we plot the genome-wide var-
iance in relative rates for branches of different average lengths
(fig. 2B). In statistical terms, the relative rates are heterosce-
dastic, meaning they show unequal variance across the range
of values of the dependent variable, here the average branch
length. The presence of a nonconstant mean—-variance trend
in the residuals stands in violation of one of the assumptions
underlying linear regression, namely homoscedasticity, or
constant variance of residuals with respect to the dependent
variable. More importantly, we suspect that this heterosce-
dasticity of the relative rates adversely affects the confidence
with which we can infer rate shifts on specific branches. For
example, the presence of a mean—-variance trend can increase
the likelihood of observing higher relative rates on longer
branches by chance, rather than due to gene-specific changes
reflecting changes in selective pressure. A potential negative

consequence could be a higher proportion of false positives
while inferring convergent rate changes on such branches.

Updated Method to Calculate Relative Rates

In this study, we present an approach relying on a combina-
tion of data transformation and weighted linear regression to
calculate relative evolutionary rates that addresses the statis-
tical limitations resulting from relative rates calculated using
naive linear regression. The proposed method updates are
based on the ideas presented in Law et al. (2014), who devel-
oped new linear modeling strategies to handle issues related
to mean-variance relationship of log-counts in RNA-seq
reads (Ritchie et al. 2015). We represent the branch lengths
on individual gene trees as a matrix Y, where rows correspond
to individual genes (g), and columns to the branches (b) on
these trees. We first transform the branch length data using a
square-root transformation (eq. 1).

Y = /e O]

Following the transformation, we perform a weighted re-
gression analysis to calculate the relative evolutionary rates as
follows: we calculate the average tree and perform a first-pass
of linear regression using the transformed branch length ma-
trix (egs. 3 and 4).

Xp = ?;, (2)

where x,, is the branch length for branch b in the average tree.
B=X)"XTY (3)

R=Y —Xp, (4)

where f§ are the coefficients of linear regression and R is the
residuals matrix.
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Fic. 2. Heteroscedasticity in the relative rates computed using current method. (A) Relative rates on branches of Manic Fringe (MFNG) gene tree,
calculated using original method. Points represent branches of the gene tree, with relative rates computed on the branches plotted against the
genome-wide average length. Heteroscedasticity in the relative rates can be visualized as the increase in the variance of the relative rates with
increasing average branch length. (B) Genome-wide mean—variance trends in relative rates. The logarithm of the relative rate variance within each
bin is shown, where branches are binned based on their average lengths across all gene trees. Bin ranges were chosen to provide equal numbers of
observations per bin. Higher variance in relative rates is observed with increasing branch lengths, and the extent of this heteroscedasticity is
calculated using the “r-squared” of the quadratic model between the variables plotted.

We then estimate the mean—variance trends in the resid-
uals of the linear regression analysis by empirically fitting a
locally weighted scatterplot smoothing (LOWESS) function
capturing the relationship between the log of variance of the
residuals and the branch lengths (eq. 5).

log(R?) ~ f(Y') )

Subsequent to estimating this function, we assign each
gene x branch observation a weight W based on the predicted
value for the branch, obtained from the first pass linear re-
gression (eq. 6).

W = e (X) 6)

For branches that are shorter on average, the variance in
the residuals is smaller, thus resulting in a higher weight, and
vice versa. Using the computed weights, we perform a
weighted regression analysis between the individual branch
length (dependent variable) and the average tree (indepen-
dent variable). The weighted regression analysis attempts to
remove the heteroscedasticity in the residuals by computing
the residuals after minimizing the weighted sum of squared
errors, as opposed to the raw sum of squared errors (eqgs. 7
and 8).

Buns = (XTWxX) " XTwY' ?)
R=Y — XBys 8)
/ Yeb/Web
Fy = u7 )
Op

where gy, is the SD of the weighted residuals in branch b.
Subsequent to the weighted regression analysis, the

weighted residuals . »)» are estimated by rescaling the regres-

sion residuals (rg) with the weights, and the weighted
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residuals are additionally standardized to have unit variance
within every branch across all genes (eq. 9). The weighted
residuals (V;b) correspond to the weighted relative rate on
branch b for gene g The differences to the relative rate cal-
culations introduced by the updated method result in
changes to the scales of the relative rates computed.
However, we note that this scale is arbitrary and the down-
stream gene-trait correlations for binary traits estimated using
a Mann-Whitney test (see Materials and Methods) depend
only on the ranks of the relative rates of each branch within
any single gene tree. Figure 3 shows the workflows for com-
puting relative evolutionary rates using the original and
updated method.

Results

Improvements to Relative Evolutionary Rates
Methods Mitigate Genome-Wide Mean—Variance
Relationship

Our updated method to calculate relative rates using data
transformation followed by weighted regression produces
nearly homoscedastic relative rates that do not show a sig-
nificant global mean—variance relationship. Figure 4A shows
the relative rates computed for the MFNG protein-coding
gene tree using the updated method. In comparison to the
original method based on naive linear regression (fig. 2A), we
observe that the updated method produces relative rates
showing no apparent increase in the variance of relative rates
on longer branches of the tree. Plotting the genome-wide
mean-variance trends of the relative rates across all branches
of all gene trees, we observe that the relative rates calculated
from transformed-weighted residuals show nearly constant
variance across branches of varying lengths (fig. 4B). We ad-
ditionally checked the mean-variance relationships from in-
termediate steps in our method that can estimate relative
rates, corresponding to two method variants which do not
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Fic. 4. Updated method to calculate relative rates shows no apparent trends of heteroscedasticity. (A) Manic Fringe (MFNG) gene relative rates
calculated using the updated method. In comparison to figure 2A, we do not observe an increase in the variance of relative rates of branches with
increasing average branch length. (B) Genome-wide mean—-variance trends for relative rates computed using the updated method show constant
variance with increasing branch lengths. Contrasting the trends resulting from the application of original (fig. 2B) and updated method (fig. 4B), we
observe that the updated method produces nearly homoscedastic relative rates. The extent of heteroscedasticity, computed as the “r-squared” of
the quadratic model between the variables plotted, is nearly 100-fold lower with the updated method compared with original method.

implement data transformation (linear-weighted regime) or a
weighted regression (square-root unweighted regime) (sup-
plementary fig. S1, Supplementary Material online). However,
we find that the intermediate regimes, utilizing only one of
the method updates (branch length transformation or
weighted regression alone) are less effective at eliminating
mean-variance trends. A combination of transformation
and weighted regression steps works best at producing ho-
moscedastic relative rates.

Better Robustness to Inclusion of Distantly Related
Species

In earlier applications of our relative rates method to detect
genetic elements convergently responding in subterranean
mammals and marine mammals, respectively, we sampled
alignments of placental mammal species to construct phylo-
genetic trees for each genetic element (Chikina et al. 2016;
Partha et al. 2017). These alignments were derived from the
placental mammal subset of the 100-way vertebrate align-
ments made publicly available by the UCSC genome browser
(Casper et al. 2018). In addition to these placental mammals,
the 100-way alignments include four other species of mam-
mals, three marsupials—Opossum (monDom5), Wallaby

(macEug2), Tasmanian Devil (sarHar1), and one
monotreme—Platypus (ornAnat). Despite deep conserva-
tion of many genetic elements in these nonplacental mam-
mals, human-and-mouse centered phylogenomic studies
tend to exclude these species due to the introduction of
long branches in the phylogenetic trees (Parker et al. 2013;
Marcovitz et al. 2016; Prudent et al. 2016). For instance, in
previous applications of our relative rates method, we delib-
erately excluded these nonplacental mammals since they pro-
duce wide variations in relative rates due to the introduction
of long branches, which would adversely affect the confidence
with which we make inferences of convergent rate accelera-
tion in species exhibiting a convergent phenotype (Chikina
et al. 2016; Partha et al. 2017). However, scanning for rate-trait
associations across tree data sets with higher numbers of
species would allow for more statistical power, and hence a
relative rates method that can reliably include such distantly
related species offers a clear advantage. To this end, we tested
the robustness of our updated method to the inclusion of
distantly related species at inferring convergent rate shifts. We
chose two phylogenetic data sets 1. Genome-wide protein-
coding gene alignments across 59 placental mammal species,
and 2. across 63 mammals including four nonplacental
mammals in addition to the placentals. An example
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Fic. 5. Comparison of robustness of methods to inclusion of nonplacental mammals. (A) Relative rates of Peropsin (RRH) gene branches for trees
with and without nonplacental mammals, using the original versus the updated method. The relative rate ranks of terminal lineage branches
within the RRH tree are plotted with respect to the inclusion of nonplacental mammals. Red/grey points denote subterranean branches. Ranks of
relative rates computed by the original method show wider variation with respect to the inclusion of nonplacental mammals, whereas updated
methods reveal stronger concordance. Mean squared sum of residuals (MSE) were calculated based on a linear model between the ranks across the
two tree data sets with slope coefficient equal to 1. (B) Updated method shows improved concordance in ranks of relative rates across trees with
and without nonplacental mammals. For 48 out of 55 genes, rank concordance is better for relative rates computed using the updated method
(MSE(original)-MSE(updated) > 0). For the other 7 genes, the two methods do not show strong differences in the MSE values, with the original
method outperforming the updated by slight margins. (C) Updated method shows improved robustness to inclusion of nonplacental mammals at
detecting subterranean acceleration of eye-specific genes. Individual points represent rate acceleration on subterranean branches for each of 55

eye-specific genes computed across two data sets using the two methods.

Based on a linear model between the subterranean acceleration scores

across the two tree data sets with slope coefficient equal to 1 we calculate the mean squared sum of residuals (MSE). An improved robustness

(lower MSE) to the inclusion of nonplacental mammals is observed with

demonstration of how our current method to calculate rel-
ative rates is sensitive to the inclusion of nonplacental mam-
mals is illustrated in figure 5A. Using the Peropsin (RRH) gene
for illustrative purposes, we show that the ranks of relative
rates computed using the current method considerably vary
upon the inclusion of nonplacental mammals. These changes
in ranks are observed across many branches on the gene tree
including one of the four subterranean branches (Cape
golden mole). In comparison, the updated method displays
a stronger concordance in the ranks of the computed relative
rates (fig. 5A). Consequently, the subterranean acceleration
scores for RRH computed using the updated method are
more stable with the inclusion of nonplacental mammals
(table 1).

We also performed a larger scale benchmarking of the
robustness of our methods to the inclusion of nonplacental
mammals across 55 genes showing eye-specific expression.
These genes were identified based on mouse microarray ex-
pression data across 91 tissues (see Materials and Methods).
We first compared the estimated concordance in ranks of
relative rates computed using the original and updated
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the updated method.

method in trees including and excluding the nonplacental
mammals. For each gene, we calculated concordance in ranks
using the mean squared error of residuals of a linear model
(see Materials and Methods), where lower MSE values reflect
better robustness. We observed that for 48 (out of 55) eye-
specific genes, the updated method shows improved concor-
dance in the ranks of relative rates across the two sets of gene
trees (fig. 5B). Using a pairwise Wilcoxon test, we compared
the MSE values obtained using the original versus updated
method, revealing a statistically significant (P ~ 6e-10) de-
crease in MSE values obtained using the updated method.
For each of these eye-specific genes, we also calculated
subterranean acceleration scores (see Materials and
Methods) reflecting the convergent rate acceleration on the
four subterranean branches independently in gene trees in-
cluding and excluding the nonplacental mammals. Based on
the relative rates calculated using each method, we compared
the concordance of the subterranean acceleration scores
across the two tree data sets. Ideally, we expect the scores
produced by the methods to be highly consistent across the
two data sets since the four nonplacental mammals are not
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Table 1. Subterranean Acceleration Scores for Peropsin (RRH)
Computed Using Two Methods, and across Two Data Sets.

Data Set Method
Original Updated
With 2.70 2.1
nonplacentals (rho=0.31; P =0.002) (rho=0.27; P =0.008)
Placentals only 1.38 2.0

(rho=0.21; P =0.041)  (rho=0.26; P =0.01)

Note.—In comparison to the original method, the updated method shows stronger
consistency in the scores across the two tree data sets with and without the non-
placental mammals. The subterranean acceleration scores reflect the significance of
convergent rate acceleration on the four subterranean branches.

subterranean, with only minor differences arising due to the
inclusion of four additional background species. The results of
the analysis revealed that the updated method produces su-
perior concordance in the scores across the two tree data sets,
reflecting its improved ability to handle the long branches
introduced by the nonplacental mammals (fig. 5C).

Improved Power to Detect Convergent Rate Shifts in
Simulated Trees

In order to compare the power of our methods to detect
convergent rate shifts in branches across a range of evolu-
tionary scenarios, we developed a model to simulate individ-
ual gene trees. Such a model allows us to rigorously examine
method performance in relation to various parameters in
phylogenetic data sets including number of foreground
branches and length distribution of foreground branches,
where foreground branches describe branches showing a con-
vergent phenotype, while background branches do not. The
limited availability of “ground truth” examples of conver-
gently evolving genetic elements calls for the development
of biologically realistic simulations of sequence evolution.
Using our model to simulate trees (see Materials and
Methods), we compared the power to detect rate shifts in
relation to two factors: 1. Average lengths of foreground
branches, in particular extreme foreground branches that
are very short or very long on average. 2. Number of fore-
ground branches. We investigated the performance of the
updated method in detecting rate shifts in such extreme
branches, assessing the power advantage resulting from cal-
culating relative rates that do not suffer from a biased mean—
variance relationship.

Our model to simulate phylogenetic trees allows for ex-
plicit control over choosing foreground branches showing
convergent rate acceleration. We simulate “control” trees,
where all branches are modeled to evolve at their respective
average rates, and “positive” trees, where the chosen fore-
ground branches are modeled to evolve at an accelerated
rate. Initially, we chose a foreground rate multiplier value of
2, which corresponds to foreground branches in positive trees
being sampled at twice their average rates (see Materials and
Methods). We first compared the heteroscedasticity in the
relative rates on the branches of the control trees calculated
using the original and updated methods. Similar to the trends
observed in mammalian gene trees (supplementary fig. S1,

Supplementary Material online), we observed that the
updated method outperformed the original method at pro-
ducing homoscedastic relative rates (supplementary fig. S4,
Supplementary Material online). We then calculated a fore-
ground acceleration score for individual simulated trees, both
control and positive. A more positive value of this score, cal-
culated as a signed negative logarithm of the P value, reflects
stronger convergent rate acceleration on the foreground
branches (see Materials and Methods). Subsequent to esti-
mating these scores, we evaluated the performance of the
two methods, based on the power to distinguish the positive
trees from control trees. In two independent simulation set-
tings with foreground branches of long and short average
lengths, we observed that the updated method offers more
power to detect positive trees (fig. 6B and see supplementary
fig. S5, Supplementary Material online, for precision-recall
curves).

We repeated the analyses with more conservative choices
for modeling foreground acceleration using foreground rate
multiplier values of 1.5 and 1.75 to ensure the improved
power was robust to the choice of foreground rate multiplier
(m). Consistent with the original analysis, the updated
method was more powerful at precise detection of positive
trees for all values of m (supplementary fig. S6, Supplementary
Material online). We also observed that with increasing values
of m, it becomes easier to detect positive trees (fig. 6B and
supplementary fig. S6, Supplementary Material online) which
is expected since the foreground branches will be longer for
larger values of m. Our choices of foreground rate multiplier
values in simulations (m = 1.5, 1.75, and 2) represent chal-
lenging scenarios for our method in comparison to fore-
ground rate multiplier estimates observed in real data. For
instance, our simulation choices are lower than the fore-
ground rate multiplier estimates for genes showing strong
relaxation of constraint in subterranean mammals, and
more comparable to the estimates for genes under positive
selection (see Materials and Methods and table 4). This
proves the utility of our method at detecting genes showing
rate acceleration due to positive selection, in addition to re-
laxation of constraint.

We also performed a control analysis using foreground
acceleration scores computed using four length-matched
control foreground branches that were not the true fore-
ground, proving that the positive trees were not detected
due to random chance (supplementary fig. S7,
Supplementary Material online). Finally, in addition to the
positive trees with foreground branches that were long or
short, we compared the power to detect rate acceleration
on foreground branches of intermediate length. Consistent
with the findings in short/long foregrounds, we find a modest
yet significant improvement offered by the updated method
(supplementary fig. S8, Supplementary Material online).
Overall, we find that our updated method to compute rela-
tive rates offers a significantly improved power to detect con-
vergent rate shifts in simulated trees.

We then compared the power to detect rate shifts across
varying numbers of foreground branches by simulating pos-
itive trees with seven foreground branches of long average
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Fic. 6. Comparison of method performance across simulated phylogenetic trees. (A) Branch length distributions for simulating phylogenetic trees
with foreground branches labeled. Two independent simulations were performed with foreground branch sets comprised of long foreground
branches (left panel) and short foreground branches (right panel), respectively. (B) Power to detect rate shift in foreground branches of simulated
trees. Across five independent simulations of control trees and positive trees, we measured the area under the precision-recall curve (AUPR) to
precisely detect positive trees using the foreground acceleration score. The AUPR distributions obtained using the updated method to calculate
relative rates are significantly elevated compared with the original method across simulated scenarios involving foreground sets of long (left) and

short branches (right), respectively.

lengths (supplementary fig. S9, Supplementary Material on-
line). We subsequently generated positive trees with subsets
of n branches (n ranging from 4 to 7) among these seven
foreground branches (supplementary fig. S9, Supplementary
Material online). Within each of these data sets, we calculated
foreground acceleration scores for control and positive trees
using each method independently. We observed that the
updated method to calculate relative rates is consistently
more powerful than the original method at precise detection
of positive trees (fig. 7A). We repeated the analysis choosing
seven foreground branches that were short on average rather
than long (supplementary fig. S9, Supplementary Material
online) and observed consistent gains in power using updated
method to calculate relative rates (fig. 7B).

Applying of our method to simulations with varying con-
figurations of foreground branches also revealed that the
power to detect foreground acceleration is higher for longer
foreground branches. In other words, it is easier to detect rate
acceleration on longer foreground branches compared with
shorter ones (figs. 6A vs. B and 7A vs. B). In terms of sequence
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divergence, longer branches represent instances of higher se-
quence divergence or more changes, which are easier to de-
tect as the method ranks the rates on branches relative to one
another. The increased power to detect rate acceleration
therefore becomes especially useful in convergent pheno-
types involving short foreground branches, where the
improvements are nearly 2-fold (fig. 7B).

Relative Rates-Based Inference Is Robust to Minor
Uncertainties in Species Tree Topology

Our method relies on estimating sequence divergence on
branches of phylogenetic trees with a fixed topology. Efforts
to better resolve the phylogeny of extant mammals have
resulted in continuous updates to the consensus species
tree topology (Murphy et al. 2001, 2007). Topology trees
commonly used in phylogenomic analyses of extant mam-
mals include the UCSC genome browser’s 100-way tree, as
well as the timetrees reported in Meredith et al. (2011) and
Bininda-Emonds et al. (2007; Casper et al. 2018). Differences
between these species tree topologies often involve entire
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Fic. 7. Improved power to detect foreground rate shifts using the updated method across different numbers of foreground branches. This analysis
was performed across five independent simulations of control trees and positive trees with varying numbers of foreground branches (4-7). Within
each simulation, we measured the area under the precision-recall curve (AUPR) to precisely detect positive trees using the foreground acceleration
score. The AUPR distributions obtained using the updated method to calculate relative rates are consistently elevated compared with the original
method across simulations with different numbers of foreground branches. These simulations were performed across two scenarios with different
foreground branch sets consisting of short (A) and long branches (B), respectively.

clades, and the decision to choose a particular topology tree
can potentially strongly influence the outcomes of phyloge-
netic analyses. Here, we benchmarked the robustness of our
relative rates method to the choice of topology tree. We
constructed protein-coding gene trees based on two different
species tree topologies, namely the UCSC 100-way tree and
our modified Meredith et al. (Meredith+) topology tree (see
Materials and Methods). The Robinson-Foulds metric (cal-
culated using the function RFdist in the R package
“phangorn”) between these two phylogenies is 22, reflecting
differences in 22 partitions of species (Robinson and Foulds
1981; Schliep 2011). We observed that both the updated and
original methods to calculate relative rates show robust sig-
natures of subterranean rate acceleration for eye-specific
genes with respect to the species tree topology used (fig. 8).

Comparison of Power to Detect Enriched Pathways
Associated with Two Independent Convergent
Phenotypes

Beyond examining individual genes, we further assessed our
new method’s ability to detect pathway enrichments for
genes under relaxation of constraint in subterranean mam-
mals and marine mammals (see fig. 9 for respective fore-
ground branches and  supplementary fig.  S10,
Supplementary Material online, for average rates).
Compared with our original method, the updated method
detected more enriched Gene Ontology (GO) terms with
accelerated evolutionary rates in subterranean mammals (ta-
ble 2). Additionally, the fold enrichment for detected terms
was significantly stronger with the updated method (supple-
mentary fig. S10 and tables S1-S6, Supplementary Material
online). On the other hand, the marine system showed mixed
results. Both the updated and the original methods showed
approximately equal power to detect enriched GO terms if
we only consider the number of terms detected (table 3 and
supplementary tables S7-S12, Supplementary Material

online). However, when comparing the fold enrichment for
detected terms, the original method was significantly better
than the updated method (supplementary fig. S10,
Supplementary Material online). These contrasting results
from the subterranean data set versus the marine data set
indicate the importance of tailoring the corrections we have
developed to the data set of interest, as well as the impor-
tance of taking advantage of simulation-based power and
robustness assessments to develop methods that are broadly
applicable to many convergent phenotypes.

Implementation and Availability

Our method is publicly available as an R package called
RERconverge on GitHub at https://github.com/nclark-lab/
RERconverge and described in (Kowalczyk et al. 2018). Also
included are extensive vignette walkthroughs to guide users
through the software. RERconverge requires as input gene
trees with branch lengths that represent evolutionary rates
and phenotype information. Functions within the package
can take this input to calculate RERs, ancestral phenotype
information, and statistical associations between phenotypes
and evolutionary rates.

The RERconverge software is available for any platform,
and its computational efficiency allows analysis of genome-
scale data sets. When run on a set of 19,149 orthologous
genes in 62 mammal species, the full analysis can be com-
pleted in 1h and 18 min on a computer running Windows 10
with 16 Gb of RAM and an Intel Core i7-6500U 2.50GHz CPU
(Kowalczyk et al. 2018). We hope that these capabilities will
enable researchers worldwide to perform analyses to find
relationships between genes and evolutionarily convergent
traits.

Discussion

Our original evolutionary-rates-based method to detect ge-
nomic elements underlying convergent phenotypes has
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species tree topology used to construct individual gene trees. Points represent the strength of convergent subterranean acceleration for eye-
specific genes whose trees were constructed using the Meredith+ topology (x-axis), and the UCSC topology (y-axis), respectively. Based on a linear
model between the subterranean acceleration scores across the two tree data sets with slope coefficient equal to 1, we calculate the mean squared
sum of residuals (MSE). We observed that the updated method offers a marginal improvement to the robustness, as reflected by a lower MSE value.
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Fic. 9. Cladograms describing relationships between 63 mammalian species used for constructing genome-wide maximum likelihood protein-
coding gene trees. Final version of the tree we modified from the topology reported in Meredith et al. (2011) (left), and tree reported in UCSC
genome browser (right) (Casper et al. 2018). Key differences between the placement of species are highlighted using black lines. Marine species are
manatee, walrus, seal, killer whale, and dolphin. Subterranean species are cape golden mole, star nosed mole, naked mole-rat, and blind mole-rat.

already proved to be a val

uable technique to detect

genes and enhancers associated with transitions to ma-
rine and subterranean habitats (Chikina et al. 2016;
Partha et al. 2017). However, the original method
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suffered from reduced power to detect such genomic
elements due to a heteroscedastic relationship between
the mean and variance of branch lengths for a given
branch across all gene trees, that is, branches that are
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Table 2. Comparison of Number of Vision-Related Gene Ontology
Terms Enriched in Top Subterranean-Accelerated Genes Discovered
by the Original and Updated Methods.

# Subterranean-Accelerated
GO Terms (FDR<0.05)

topN: Number of
Top Accelerated Genes

Original Method Updated Method
20 2 9
100 11 28
200 16 32

Note.—Gene Ontology term enrichment analysis was performed individually on
top subterranean accelerated genes discovered by each method. Across varying
numbers of top target genes, genes discovered using the updated method were
consistently enriched for higher numbers of vision-related GO terms.

Table 3. Comparison of Number of Gene Ontology Terms Enriched
in Top Marine-Accelerated Genes Discovered by the Original and
Updated Methods.

# Marine-Accelerated
GO Terms (FDR<0.05)

topN: Number of Top
Accelerated Genes

Original Method Updated Method
50 16 10
100 27 31
200 59 59

Note.—Gene Ontology term enrichment analysis was performed individually on
top marine-accelerated genes discovered by each method. Across varying numbers
of top target genes, neither method showed a clear superiority over the other at
detecting higher numbers of enriched terms. We chose the Top50 genes for the
marine phenotype instead of Top20 as was the case with the subterranean analysis,
since no terms were enriched across either method in the Top20 gene list.

Table 4. Mole Foreground Multiplier estimates for Genes Showing
Strong Convergent Rate Acceleration on Mole Branches.

Gene Mole Foreground Rate
Multiplier Estimate

Evolutionary Mode

LIM2 8.63 Relaxed
CRYBB3 5.36 Relaxed
CRYBB2 4.87 Relaxed
CRYGC 4.62 Relaxed
CRYBA1 3.89 Relaxed
GPR89B 3.30 Relaxed
KRTAP17-1 3.22 Positive selection
GNAT1 2.66 Relaxed
ROM1 2.58 Relaxed
COL4A4 1.70 Positive selection

longer on average have higher variance than branches
that are shorter on average.

Here, we developed a method using a square-root trans-
formation and a weighted regression based on the observed
mean-variance relationship to correct for the heteroscedas-
ticity. While our objective was to develop a method that
robustly handles mean—variance trends in phylogenetic trees,
we do not systematically investigate factors underlying this
property. Previous genome-scale analyses in modern birds
have showed evidence for base composition heterogeneity
affecting variance of branch lengths in exon trees (Jarvis
et al. 2014). However, in our phylogenetic data set of mam-
malian protein-coding genes, we found no evidence for base

composition heterogeneity influencing sequence divergence
at the gene level—we failed to detect any significant global
trends between GC-content of our sequences and their raw
branch lengths, relative rates computed using our original
method, or from our new method (supplementary fig. S11,
Supplementary Material online). Further comparative geno-
mics analysis is required to better understand factors
influencing branch length distribution patterns in phyloge-
netic trees.

We tested our new method on real and simulated phylog-
enies and observed improved robustness to wider ranges of
branch lengths and increased ability to detect convergent
evolutionary rate shifts. Our new method offers increased
robustness to the inclusion of distantly related species with
long branch lengths in our phylogeny, namely nonplacental
mammals. When we compared results from an analysis using
only placental mammals and an analysis that included non-
placental mammals using both our original and our updated
methods, we found that our new method, unlike our original
method, is unimpaired by the inclusion of nonplacental
mammals. By improving our method'’s robustness to inclu-
sion of long branches, we increased the method’s applicability
to a broader range of species and hence a broader range of
convergent phenotypes. Additionally, our new method’s in-
creased power could enable us to discover more convergently
evolving genomic elements. One particular incentivizing ex-
ample for these improvements is the recent efforts to se-
quence the northern marsupial mole, a completely blind
mammal (Archer et al. 2011). When considering using sub-
terranean species to find genes and enhancers associated with
vision, the ability to include the nonplacental marsupial mole
along with the other nonplacental mammals in our data set
will allow for more power in a scan for vision-specific genetic
elements showing convergent regression in the five blind
mammals.

In addition to testing our method on real data, we also
developed a simulation-based strategy to represent a “true
positive” case of convergent evolution. Our simulations follow
a similar approach to simulating RNA-seq counts where sim-
ulated rates are essentially capturing the number of substitu-
tions that occur along a branch (Di et al. 2011). We showed
that our new method demonstrates improved detection of
rate shifts both when foreground species occupy long, high-
variance branches and when foreground species occupy
short, low-variance branches. This allows the method to de-
tect convergent rate shifts given a variety of potential config-
urations of convergently evolving species. The types of
simulations we developed are essential because relatively
few concrete instances of sequence-level evolutionary con-
vergence exist, so biologically accurate simulations of such
evolution are essential to rigorously test methods that detect
shifts in evolutionary rates. One simplification of our simula-
tion method is that all species are present in all simulated
trees, which is not the case in real genomic data because of
genomic element gain and loss across species. However,
maintaining constant species composition in our simulated
trees should have little impact on our ability to compare our
methods because we expect both to be equally impacted by
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species presence and absence. A second simplification is that
we assume all convergently evolving species have the same
phylogenetic relatedness, that is, each foreground branch is
an independent instance of convergent evolutionary rates.
We would like to be able to answer questions about our
method’s power given more complex phylogenetic configu-
rations. Developing methods to answer those types of ques-
tions will require a much higher degree of complexity in our
simulations, but it will also allow us to determine which spe-
cies to add to our genomic data sets to increase our power to
find convergently evolving genomic features.

Our improved method has proved valuable for detecting
genomic elements associated with two binary traits—subter-
ranean-dwelling or not, and marine-dwelling or not—and we
will extend our method for use in convergent continuous
traits and nonbinary discrete traits. We will also assemble
complementary analyses to assess the robustness and power
of each method. By extending the scope of our method to
nonbinary traits, we will expand the potential search-space of
our method to a plethora of new convergent phenotypes.
Our overarching goal is to develop an entire suite of methods
that can utilize any conceivable phenotypes as inputs to ac-
curately and robustly identify convergently evolving genomic
elements.

Materials and Methods

Protein-Coding Gene Trees across 63 Mammalian
Species

We downloaded the 100-species multiz amino acid align-
ments available at the UCSC genome browser, and retained
only alignments with a minimum of ten species. We then
pruned each alignment down to the species represented in
figure 9 of the proteome-wide average tree. We added the
blind mole rat ortholog of each gene based on the methods
described in Partha et al. (2017). We estimated the branch
lengths for each amino acid alignment using the aaml pro-
gram from the package PAML (Yang 2007). We estimated
these branch lengths on a tree topology modified from the
timetree published in Meredith et al. We attempted to re-
solve conflicts between the topology inferred in Meredith
et al. (2011) compared with that in Bininda-Emonds et al.
(2007) based on a consensus of various studies employing a
finer scale phylogenetic inference of the species involved. The
differences between our final topology, which we call
“Meredith+" topology and the Meredith et al. topology in-
clude setting the star-nosed mole as an outgroup to the
hedgehog and shrew; cow as an outgroup to the Tibetan
antelope, sheep and goat; and the ursid clade as an outgroup
to mustelid and pinniped clades. For more details about the
literature surveyed to resolve these differences, please refer to
Meyer et al. (2018). The topology of our final “Meredith+"
tree compared with the UCSC topology tree is reported in
figure 9. In order to perform analyses benchmarking the
method robustness to tree topology, we additionally gener-
ated the protein-coding gene trees based on the UCSC tree

topology.
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Genes Showing Eye-Specific Expression

We identified eye-specific gene sets using microarray expres-
sion data from 91 mouse tissues (Su et al. 2004). We identified
genes specifically expressed in the following tissues of the
eye—cornea, iris, lens, and retina (including retinal pigmented
epithelium). These genes showed significant differential ex-
pression only in the tissue of interest compared with the
other tissues at an alpha of 0.05 (t-test).

Calculating Concordance in Relative Rates Ranks
across Data Sets with and without Nonplacental
Mammals

To estimate the robustness of relative rates calculations to
inclusion of nonplacental mammals, we calculate the concor-
dance in relative rates ranks across two phylogenetic data sets
with and without the nonplacental mammals, respectively.
For each of the 55 eye-specific genes, we rank the extant
branches in trees based on the ordering of relative rates in-
dependently in the two data sets. We then fit a linear model
between the ranks across these two data sets, while forcing a
slope coefficient of 1. We subsequently estimate the concor-
dance in the ranks as the mean squared error of the residuals
of this linear model. Lower MSE values reflect better concor-
dance in the ranks, and thus superior robustness. We subse-
quently compare these MSE values for each eye-specific gene
obtained using the original and updated methods to calculate
relative rates. A positive MSE(original) — MSE(updated)
value implies the updated method shows improved concor-
dance in the ranks of relative rates, across data sets with and
without the nonplacental mammals, respectively.

Simulating Phylogenetic Trees

Phylogenetic branch lengths have units of number of substi-
tutions per site and thus can be thought of as normalized
count data. However, we find that a Poisson distribution is
unsuitable in this case as the real branch length data show
considerable overdispersion, that is the variance is higher than
the mean (supplementary fig. S2, Supplementary Material
online). We thus model the branch lengths of the simulated
trees using a negative binomial distribution, following ideas
from studies simulating expression counts for RNAseq anal-
ysis (Robinson et al. 2009; Di et al. 2011; Law et al. 2014; Ritchie
et al. 2015).

We simulated data sets of phylogenetic trees using the
UCSC tree topology and branch lengths from the average
proteome-wide tree across 19,149 mammalian protein-
coding gene trees across 62 mammals. Supplementary figure
S3, Supplementary Material online, describes the tree topol-
ogy used for the simulations. We simulate the branch lengths
(or rates) for every branch (j) on each tree (i) according to the
following formula,

bj = Poisson (Gamma (oci/lj, oA — sqrt(oci)»j))),

where Gamma is parametrized by mean and variance. Here,
o; is a gene-specific scaling term, /; is the average rate of the
corresponding branch so that «;/; is the expected rate on the
ij'th branch, and the simulated rate is drawn from a Gamma
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distribution with that mean. The composite Poisson-Gamma
distribution is equivalent to the negative binomial distribu-
tion and thus in our simulation the mean variance relation-
ship has a quadratic component, matching what we observe
in real data (supplementary fig. S2, Supplementary Material
online).

We simulate two classes of trees in every data set based on
different input parameters. We simulate “control” trees, trees
where the /; are simply the average rate on the branch j.
These control trees do not show any explicit convergent
rate shift on any of the branches. We additionally simulate
“positive” trees showing convergent rate acceleration on fore-
ground (fgd) branches by sampling at 22" = m*/ljfgo;tml,
only on these branches (m = 1.5, 1.75, or 2). Thus, the fore-
ground branches in positive trees are effectively sampled at an
accelerated rate compared with the foreground branches in
control trees.

Estimating Foreground Rate Multiplier (m) for Genes
Showing Convergent Rate Acceleration in
Subterranean Mammals

We compared our choices for the foreground rate multiplier
(m=1.5, 1.75, or 2) in simulations to that observed in real
data using branch lengths of ten genes showing strong con-
vergent rate acceleration in the four subterranean mammals
(moles). Of the 55 genes identified in Partha et al. as showing
strongest convergent rate acceleration in the moles, we chose
the top eight genes showing relaxation of constraint, and two
genes undergoing positive selection on the four mole
branches (supplementary table S5 in Partha et al. 2017). For
each of these ten genes, we estimated the mole foreground
rate multiplier as follows: we first fit a linear model between
the gene branch lengths and the average branch lengths.
Based on the predicted values for the mole branches from
this linear model, we calculate the foreground rate multiplier
for each mole branch by dividing the real mole branch length
by their predicted value. The mole foreground rate multiplier
estimate for each gene is subsequently calculated as the mean
of the four individual foreground rate multipliers. Table 4
shows the mole foreground rate multiplier estimates for these
ten genes.

Calculating Gene-Trait Correlations

The gene-trait correlations are computed under a Mann-
Whitney U testing framework over the binary variable of
foreground versus background branches. In the subterranean
example, the four subterranean branches (fig. 1) are desig-
nated as foreground. We calculate a foreground acceleration
score reflecting the strength of convergent rate acceleration
on the foreground branches. The value is calculated as the
negative logarithm of the P value of the Mann—-Whitney test
multiplied by the direction of the correlation as given by the
sign of the rho statistic. A positive rho statistic indicates rate
acceleration in the foreground species, and the negative log-
arithm of P value reflects the strength of the convergent rate
shift. In simulated trees study, we generated trees for three
sets of foreground branches with different branch length dis-
tributions—short, intermediate, and long as illustrated in

figure 6 and supplementary figure S5, Supplementary
Material online.

Foreground acceleration score = Sign(Rho)*[—log,,P],

where rho and P are the correlation coefficient and statistical
significance of the Mann—Whitney test for association be-
tween relative rates and binary trait.

Gene Ontology Term Enrichment Analysis

We performed functional enrichment analysis in target gene
lists using the GOrilla tool (Eden et al. 2009). For each analysis,
GO terms enriched in target gene lists were identified by
comparing to a background gene list with all 19,149 genes
used to construct gene trees.

Supplementary Material

Supplementary data are available at Molecular Biology and
Evolution online.
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