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DNA repair is critical for genome stability and is maintained through
conserved pathways. Traditional genome-wide mammalian screens
are both expensive and laborious. However, computational ap-
proaches circumvent these limitations and are a powerful tool to
identify new DNA repair factors. By analyzing the evolutionary
relationships between genes in the major DNA repair pathways, we
uncovered functional relationships between individual genes and
identified partners. Here we ranked 17,487 mammalian genes for
coevolution with 6 distinct DNA repair pathways. Direct comparison
to genetic screens for homologous recombination or Fanconi ane-
mia factors indicates that our evolution-based screen is comparable,
if not superior, to traditional screening approaches. Demonstrating
the utility of our strategy, we identify a role for the DNA damage-
induced apoptosis suppressor (DDIAS) gene in double-strand break
repair based on its coevolution with homologous recombination.
DDIAS knockdown results in DNA double-strand breaks, indicated
by ATM kinase activation and 53BP1 foci induction. Additionally,
DDIAS-depleted cells are deficient for homologous recombination.
Our results reveal that evolutionary analysis is a powerful tool to
uncover novel factors and functional relationships in DNA repair.
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DNA repair encompasses a complex network of metabolic
and regulatory steps that coordinate with each other to

maintain genome stability. Elucidating this complex regulatory
network is critical for our understanding of genetic diversity and
diseases that arise when DNA repair fidelity is compromised,
such as cancer. However, defining the role of a gene in a DNA
repair process requires considerable time and experimental ef-
fort. Informatics-based approaches bypass the time and resource
limitations of experimental screens, and such bioinformatic strat-
egies have correctly inferred relationships between genes through
comparative analysis of their gene expression (1) or molecular
evolution. Analyses based on molecular evolution work from the
premise that functionally related genes often evolve at correlated
rates when studied across a variety of species, and this rate cor-
relation has been termed evolutionary rate covariation (ERC) (2).
ERC is based on the hypothesis that cofunctioning proteins ex-
perience shared changes in selective pressure in different species,
which would lead to correlated shifts in amino acid substitution
rates between cofunctional proteins. The measured correlation
coefficient between 2 proteins’ branch-specific rates is referred to
as their ERC value. Genes involved in the same biological process
often exhibit elevated ERC with each other, comprising a statis-
tically coevolving group (3, 4). Querying additional genes for
correlation with these groups has proven effective in uncovering
novel roles for genes in previously unrelated processes in model
organisms such as worms, flies, and yeast (4–6). More broadly,
ERC may be investigated between processes, revealing novel in-
terdependencies at the systems level, and can be expanded to
analyze crosstalk between networks (7). Using this approach, we
analyzed the evolutionary relationship among genes in specific

DNA repair pathways and the rest of the genome to identify re-
lationships and DNA repair factors.
The genome experiences constant damage resulting from both

endogenous and environmental sources. Depending on the dam-
age source and cellular context, DNA may incur different lesions,
including bulky adducts, single-strand breaks (SSBs), double-
strand breaks (DSBs), and interstrand and intrastrand crosslinks
(Fig. 1A). Consequently, cells have an assortment of DNA repair
pathways which recognize specific damage substrates (Fig. 1A) (8).
For example, DSBs can be resolved by nonhomologous end-joining
(NHEJ), which religates the DNA ends (9), or by homologous re-
combination (HR), which uses the sister chromatid or homolog for
templated repair (10). The nucleotide excision repair (NER)
pathway processes bulky adducts, such as UV-induced cyclo-
butane dimers and pyrimidine–pyrimidone (6–4) photoproducts
(11). Base excision repair (BER) resolves SSBs and base damage
(12). DNA mismatches and replication slippage are remediated
by mismatch repair (MMR) (13), and interstrand crosslinks are
remediated by the Fanconi anemia (FA) pathway (14). Due to
the importance of genomic integrity, these central DNA repair
mechanisms are highly conserved (8).
While unrepaired DNA damage can have negative conse-

quences such as genomic instability or cell death, genomic changes
also enable genetic diversity. For example, V(D)J recombination
enables adaptive immunity to new antigens. Similarly, meiosis,
during which a programmed DSB allows the exchange of genetic in-
formation between parental homologs, contributes genetic variation
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in the resulting progeny (15). These mechanisms, as well as the
persistence of mutations which evade accurate DNA repair, allow
genetic variation and provide the basis for evolution. Therefore,
DNA repair processes are central to both the preservation of
genome integrity and the emergence of genetic diversity. Through
computational methods such as ERC, we can exploit genetic di-
vergence over evolutionary time to identify functional relation-
ships between genes and pathways. Scanning for new genes
exhibiting elevated ERC values with a specific pathway has led to
the discovery of new genes affecting those functions (4, 7, 16).
Because ERC has not yet been used to discover new DNA repair
proteins, we demonstrate its potential through comparison to
other screening methods.
Here we provide comprehensive evolutionary analysis of the

genes involved in the 7 distinct DNA repair pathways including
BER, NER, HR, meiosis, NHEJ, MMR, and FA. We investigate
individual pathways for elevated ERC signals between their
constituent genes and screen the genome for DNA repair factors.
We find that genes in unique mammalian DNA repair processes
exhibit a coevolutionary signature with each other. Finally, we find
a role for the gene C11orf82, DNA damage-induced apoptosis
suppressor (DDIAS), in DSB repair based on its shared evolu-
tionary signature with HR.

Results
To determine whether genes in different DNA repair pathways
evolve at covarying rates, we analyzed genes in 7 DNA repair
pathways for ERC. Using published reviews and input from ex-
pert colleagues, we compiled lists for the genes comprising each
pathway (BER (12), NER (11), HR (10), meiosis (15), NHEJ
(9), MMR (13), and FA (14)) and tested each gene group for
ERC (Fig. 1B and SI Appendix, Table S1). Note that these lists
are not exhaustive, and we limited the analysis to the central
factors indicated in these reviews as well from consultation of
experts in each DNA repair pathway. We find that genes in 6 of
the distinct DNA repair pathways exhibit significantly elevated
mean ERC (Fig. 1B; excluding NER), suggesting that the con-
stituents of these DNA repair pathway are subject to similar
evolutionary pressures.
Most DNA repair pathways exhibit distinguishable DNA

processing steps. Each repair step involves distinct proteins in
processing the DNA substrate. For example, HR, which uses a
homologous template for repair, can be broken down into 5
distinct steps, including 1) DSB recognition/resection, 2) RAD51

filament mediation, 3) RAD51 filament disruption, 4) joint
molecule disruption/DNA heteroduplex extension, and 5) reso-
lution and dissolution (modified from ref. 10 [SI Appendix, Fig.
S1A]). To determine whether genes that function in the same
DNA processing step coevolve, we tested the ERC values be-
tween proteins that are known to function within each step of
HR and observe significantly elevated ERC at each step (SI
Appendix, Fig. S1B). We then analyzed HR genes globally for
ERC and performed hierarchical clustering to group genes with
similar ERC profiles (Fig. 2). Similar analysis was done for the
genes in the remaining DNA repair pathways we studied (BER,
NER, meiosis, MMR, FA, and NHEJ; SI Appendix, Figs. S2–S7).
After demonstrating that DNA repair pathways exhibit ERC,

we implemented this signature to identify genes that may be
functioning during DNA repair. To do this, we ranked all genes
in the mammalian ERC dataset by their mean ERC with each
DNA repair pathway in descending order (Dataset S2). Addi-
tionally, we performed genome-wide rankings for ERC with each
gene included in our study (Dataset S3; n = 137 genes). We
divided the ranked lists into 20 bins (5% [874 genes] per bin; Fig.
3A and Dataset S2) and first asked if ranking genes by their
mean ERC with HR enriches for known HR factors. After
plotting the frequency of known HR genes in each bin of the
ranked list (Materials and Methods), we scanned the distribution
of HR gene positions for enriched ranges (Fig. 3A). The window
of enrichment for elevated HR genes was determined using a
scan statistic followed by permutation test as described in ref. 17
(SI Appendix, SI Methods). We find that the majority of the
known HR genes (27 of the 39 HR genes considered) fall in the
top 20% of this ranking (P < 0.001 [bins 1 to 4]; Fig. 3A and
Dataset S2). Since the top 20% of ERC-ranked genes was
enriched for known HR factors, we performed Gene Ontology
(GO) term analysis on this set of genes (n = 3,497 genes; corre-
sponding to the first 4 bins). We find significant overrepresentation
of recombination-related GO terms as well as additional DNA
metabolism terms (Table 1; padj < 0.05). Therefore, genes found in
the top 20% (3,497 genes; Dataset S2) are enriched for known HR
factors and potentially novel HR genes as well as genes that exhibit
cofunctionality with HR.
Next, we determined how our evolutionary approach com-

pared to genetic screens for HR factors. Mammalian HR screens
routinely use the direct repeat-GFP reporter (drGFP; ref. 18).
Here a DSB is induced at a restriction cut site within a non-
functional GFP copy. HR repair of the DSB using a downstream
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Fig. 1. Genetic constituents of most DNA repair pathways exhibit evolutionary rate covariation. (A) Seven mammalian DNA repair pathways are responsible
for repairing DNA lesions. In pathway 1, SSBs (indicated by a missing nucleotide), abasic sites, and alkylation damage are repaired by the BER pathway. In
pathway 2, bulky adducts (indicated by the red star) are repaired by NER. In pathways 3 to 5, DSBs (indicated by the 2 nicks) are repaired using HR, NHEJ, and
meiosis. In pathway 6, replication errors (indicated by the red nucleotide mismatches) are repaired using MMR. In pathway 7, interstrand crosslinks (indicated
by the red line) are repaired by the FA pathway. (B) The genes mediating the 7 mammalian DNA repair pathways were tested for elevated ERC. Statistical
significance was determined by permutation test, where the P value is the computed probability of the observed mean ERC or greater from 1,000 equally
sized groups of randomly sampled genes. n is the number of genes in the indicated group (the gene list is found in SI Appendix, Table S1).
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GFP template results in GFP expression (18). Paired with a
siRNA library against the coding genome (n = 21,040), this assay
has been used to identify novel HR factors (19). Analyzing this
published study’s gene ranking (1,052 genes in 20 bins, ranked by
relative drGFP), we find a window of enrichment for HR genes
in the top 5% of this ranking (P < 0.001 [bin 1]; Fig. 3B). We
note the top 20% of this drGFP-based ranking contains 17
known HR factors, versus the 27 HR factors we find in the top
20% of the ERC-based ranking (Fig. 3A).
We next asked how ERC ranking would compare to other

screens for a different DNA repair pathway, FA. Using the same
approach described above, we ranked the ERC dataset (n =17,487
genes) by mean ERC with FA (Fig. 3C and Dataset S2). We find a
window enriched for known FA genes in the top 10%, containing
12 known FA factors (P < 0.001 [bins 1 and 2]; Fig. 3C). We next
compared our ERC analysis to a genome-wide shRNA screen (n =
49,281 shRNAs) to identify genes in the FA pathway (20). In this
screen, shRNA treated U2OS cells were screened for mitomycin C
(MMC) sensitivity (20). MMC is a DNA crosslinking agent that is
routinely used in FA diagnosis. Analyzing this study’s shRNA tar-
gets, we ranked targets based on MMC sensitivity and divided them
into 20 bins (2,464 targets per bin). We find a window enriched for
known FA genes in the top 25% of this ranking, which contains 16
of the 20 known FA genes present in both screens (P < 0.001 [bins
1 to 4]; Fig. 3D). We note that the top 10% of this gene ranking
contains 5 known FA factors, versus the 12 FA factors we find in
the top 10% of the ERC-based gene ranking (Fig. 3C).

Since ranking the genome by ERC with HR and FA enriches
for known HR and FA factors, we next analyzed the top 5% of
HR-enriched genes for HR factors as a proof of principle. DDIAS
ranks 63rd out of 17,487 genes in the ERC-based ranking with HR
(Dataset S2). In addition to its coevolution with HR, we noted
reports that DDIAS is overexpressed in colorectal and lung cancer
cell lines and tissues, and its depletion results in DNA breaks in a
nonsmall cell lung carcinoma cell line (A549) (21). DDIAS also
contains an OB-fold domain similar to the ssDNA-binding do-
main of RPA1 (21). We next analyzed ERC between DDIAS and
the DNA repair pathways in our study (Fig. 4A). Of these path-
ways, we find that DDIAS exhibits significantly elevated ERC with
the DSB repair pathways HR and NHEJ and the highest mean
ERC with HR (Fig. 4A; P < 0.05 cutoff). Given both the strong
ERC between DDIAS and HR genes as well as its links to cancer,
we sought to experimentally determine whether DDIAS has a role
in promoting HR. We first knocked down DDIAS by siRNA
(Fig. 4B).
To determine if DDIAS depletion results in induction of the DSB

checkpoint response, we assayed DDIAS-depleted U2OS cells for
ATM and ATR activation (Fig. 4B). Upon DSB formation, the ATM
kinase is phosphorylated at S1981, which is required for ATM sta-
bilization at DSBs (22). In addition to ATM phosphorylation, upon
replicative damage, ATR kinase phosphorylates the CHK1 protein at
S345. Consistent with increased DSBs, we observe increased ATM
phosphorylation (pATM) upon DDIAS knockdown (Fig. 4B). We
next asked if DDIAS depletion would result in increased CHK1
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Fig. 2. Evolutionary rate covariation between HR genes. The ERC values between HR gene pairs in each DNA processing step were calculated and plotted
using a heat map (ranging from 0 [no covariation] to 1 [positive covariation]). Genes are hierarchically clustered.
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phosphorylation (pCHK1). In contrast to pATM, we do not observe
increased pCHK1 upon DDIAS depletion (Fig. 4B). We next ana-
lyzed recruitment of the DSB repair protein, 53BP1, into repair foci
by fluorescent microscopy upon depletion of DDIAS in U2OS cells.
Consistent with a function for DDIAS in DSB repair, we observe an
increase in 53BP1 foci upon DDIAS depletion (Fig. 4C).
Next, we asked if DDIAS directly impacts HR. We used the

sister-chromatid recombination (SCR) reporter, in which a non-
functional GFP gene is interrupted by an I-SceI restriction cut site
(Fig. 4D). Upon I-SceI expression and DSB induction, HR repair
using an upstream homologous sequence results in functional GFP
(Fig. 4D; ref. 23). Upon DDIAS depletion using 2 independent
siRNAs, we observe a significant decrease in HR, resulting in sig-
nificantly fewer GFP+ U2OS-SCR cells (Fig. 4D; P < 0.001). We
observe similar results in the HEK293-SCR cell line (SI Appendix,
Fig. S8; P < 0.05). The MRE11 inhibitor, mirin, was used as a
positive control for HR inhibition, and an untransfected condition
(no I-SceI expressing plasmid) was used as a negative control (Fig.
4D). Furthermore, DDIAS knockdown is not accompanied by any
gross changes in cell cycle profile (SI Appendix, Fig. S9), ruling out
the possibility that the HR defect observed is a result of cell cycle
arrest. Together, these results indicate that DDIAS has a role in
mediating an efficient HR response to DSBs.

Discussion
We determined that mammalian DNA repair genes exhibit an
evolutionary signature with each other. Apart from NER, we

find that genes constituting most major DNA repair pathways
exhibit significantly elevated ERC (P < 0.05). In addition to
finding evidence for coevolution among entire pathways, we also
find that the discrete steps within HR coevolve individually. Fi-
nally, by ranking the genome based on coevolution with distinct
DNA repair pathways, such as HR, we uncovered genes that may
be important DNA repair factors such as DDIAS. It is interesting
to note that DDIAS also contains an OB-fold domain that is
similar to the ssDNA binding protein RPA1 (21).
Genome-wide screens are a useful tool in identifying novel

members of distinct complexes and pathways. For example, large-
scale efforts have documented genome-wide analysis of protein
expression (24), cellular localization (25), and genetic and physical
interactions (26–28). High-throughput genetic screens using RNAi
or sgRNA libraries allow researchers to query the entire coding
genome simultaneously (29). These screening methods identify
candidate genes for more comprehensive functional analysis. Spe-
cifically, gene discovery in DNA repair has benefitted substantially
from high-throughput genetic screens in yeast and mammalian
systems (19, 20, 27, 28, 30, 31). Although these studies have made
important contributions to our understanding of DNA repair, they
have limitations including expense, false positives and negatives,
and the inability to validate every knockdown by Western blot.
Additionally, these studies typically use a single assay, or sensitivity
to a single compound, as a readout. This limitation guarantees that
genes will be overlooked as not all genes within a given pathway will
contribute to a single, specific phenotype. When we compare the

A

C

B

D

***
***

***

***

Fig. 3. Genome-wide ranking of 17,487 genes for coevolution with HR and FA enriches for known HR and FA factors when compared to functional screens.
(A) Genes were ranked by mean ERC with HR. Each bin size contains 874 genes (5% of genes analyzed). The number of HR genes in each bin is plotted relative
to the total number of HR genes (n = 39) (blue bar). A scan statistic was used to find an enriched window of known HR genes, and significance was de-
termined by permutation test (1,000 nulls; ***P < 0.001, 0 to 20%). Note that only HR genes present in both screens (the ERC dataset and the screen described
in B) were included. (B) Genes were ranked by relative drGFP in a published siRNA screen (n = 21,121) for HR factors (19). Each bin contains 1,056 genes (5% of
genes analyzed). The number of HR genes in each bin is plotted relative to the total number of HR genes (n = 39) (blue bar). A scan statistic was used to find
an enriched window of known HR genes, and significance was determined by permutation test (1,000 nulls; ***P < 0.001, 0 to 5%). (C) Genes were ranked by
mean ERC with FA. Each bin size contains 874 genes (5% of genes analyzed). The number of FA genes in each bin is plotted relative to the total number of FA
genes (n = 20) (pink bar). A scan statistic was used to find an enriched window of known FA genes, and significance was determined by permutation test
(1,000 nulls; ***P < 0.001, 0 to 10%). Note that only FA genes present in both screens (the ERC dataset and the screen described in D) were included. (D) Genes
were ranked by MMC sensitivity in a published shRNA screen (n = 32,293) for FA factors (20). Each bin contains 2,464 targets (5% of targets analyzed). The
number of FA genes in each bin is plotted relative to the total number of FA genes (n = 20) (pink bar). A scan statistic was used to find an enriched window of
known FA genes, and significance was determined by permutation test (1,000 nulls; ***P < 0.001, 0 to 25%).

19596 | www.pnas.org/cgi/doi/10.1073/pnas.1906559116 Brunette et al.

D
ow

nl
oa

de
d 

at
 U

N
IV

 O
F

 U
T

A
H

 o
n 

D
ec

em
be

r 
9,

 2
01

9 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906559116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906559116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1906559116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1906559116


performance of ERC-based gene ranking to genetic screens, we
find that ERC is comparable or superior to RNAi-based screens for
HR and FA deficiency as measured by drGFP (HR; Fig. 3B) and

MMC sensitivity (FA; Fig. 3D), respectively. Here we used ERC
analysis as a gene discovery tool and demonstrate the predictive
ability of ERC to infer gene functions such as with the gene
DDIAS. Like traditional genetic strategies, this computational ap-
proach has false negatives and positives. Although we find that
27/39 known HR factors fall in the top 20% of the ERC-based
ranking, it is interesting to note the false negatives that result
from this ranking. For instance, the RAD51 filament mediator,
RAD51C, is ranked 11,012 out of 17,487 (63rd percentile). Simi-
larly, TOP3A and MUS81 are ranked 11,585 (66th percentile) and
11,747 (67th percentile), respectively (Fig. 3A and Dataset S2).
The advantage of this bioinformatic approach is the ability to rank
genes without experimental effort and expense.
In systems biology, ERC can be used to analyze evolutionary

networks between diverse processes to uncover broader func-
tional relationships. For example, in the context of genetic dis-
eases, elevated ERC inferred related pathogenic mechanisms
between supposedly unrelated diseases (7). Functional relation-
ships between distinct cellular processes have clinical importance
from the standpoint of synthetic lethality. For instance, MMR
deficiency has recently been identified as a robust predictor for
response to PD-1 blockade in colorectal tumors (32). Likewise,
we find that PDCD1, the gene encoding PD-1, has elevated ERC
with several MMR genes (SI Appendix, Fig. S10). This finding
suggests that ERC analysis could also be used to analyze DNA
repair pathways in a broader context and identify new synthetic
lethal interactions, possibly of therapeutic use. Overall, evolutionary

Table 1. HR-related GO terms are significantly enriched among
genes that exhibit greatest ERC with HR

Padj Attribute ID Attribute name N

<0.001 GO:0000731 DNA synthesis involved in DNA repair 22
<0.001 GO:0000724 DSB repair via HR 36
<0.001 GO:0000725 Recombinational repair 36
<0.001 GO:0006302 DSB repair 63
<0.001 GO:0006310 DNA recombination 63
<0.001 GO:0006281 DNA repair 134
0.001 GO:0006259 DNA metabolic process 191
0.004 GO:0036297 Interstrand cross-link repair 24
0.004 GO:1903046 Meiotic cell cycle process 48
0.004 GO:0006955 Immune response 208
0.006 GO:0006974 Cellular response to DNA damage stimulus 174
0.008 GO:0000732 Strand displacement 16
0.011 GO:0001819 Positive regulation of cytokine production 108
0.017 GO:0032729 Positive regulation of IFN-gamma production 27
0.025 GO:0071897 DNA biosynthetic process 37

GO term enrichment analysis was performed for the 3,497 genes
(corresponding to the top 20% in Fig. 3A) exhibiting highest mean ERC with
HR using the FuncAssociate web tool (llama.mshri.on.ca/funcassociate (38)).

Fig. 4. DDIAS depletion results in defective DSB repair. (A) Violin plots show the distribution of ERC values between DDIAS and major DNA repair pathways.
Overlaid box plots indicate the quartiles of each distribution, and a white dot represents the median. Permutation P values are listed reflecting the signif-
icance of DDIAS’s ERC elevation with each pathway. (B) siDDIAS-U2OS cells were Western blotted for DDIAS, pATM-S1981, ATM, pCHK1-S345, CHK1, and
alpha tubulin (Left). pATM signal was quantified and normalized to alpha tubulin signal. The mean of 3 experiments is plotted with SEM (Right; *P < 0.05). (C)
The 53BP1 foci were quantified in siDDIAS-U2OS cells. The average number of 53BP1 foci (Bottom Left) and percentage of cells ≥5 53BP1 foci (Bottom Right)
were quantified from 2 independent experiments (n = 200 cells per condition). Means are plotted with SEM graphed (*P < 0.05; ***P < 0.001). (D) DDIAS
depletion using 2 independent siRNAs results in reduced HR in U2OS-SCR cells. Schematic of the SCR-GFP reporter system is shown (Top). U2OS-SCR-GFP cells
were treated with siRNA targeting DDIAS (siDDIAS 1 and 2; see SI Appendix, Fig. S9, for corresponding Western blot showing DDIAS depletion). Untransfected
cells and I-SceI–transfected cells treated with mirin were also measured. Mean %GFP+ is plotted with SE. (***P < 0.001.) n.s., not significant.
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analysis is an important tool to understand the functional rela-
tionships between DNA repair genes and pathways and to uncover
heretofore unknown components and relationships.

Materials and Methods
Calculation of ERC Values. ERC values were calculated pairwise for 17,487
genes from 33 closely related mammal species as described in Clark and Alani
(2, 7). The protein-coding sequences of orthologous genes from 33 mammal
species were downloaded from the University of California, Santa Cruz Ge-
nome Browser as the 100-way vertebrate alignment (33). The full species set
and criteria for species selection are detailed in SI Appendix, SI Methods. For
each orthologous gene alignment separately, we calculated the branch
lengths (amino acid divergence) along the species tree topology using the
aaml program of the phylogenetic analysis using maximum likelihood
(PAML) package (34). The aaml program uses a likelihood model for which
we chose the Whelan and Goldman empirical substitution matrix. To ac-
count for different evolutionary rates across amino acid sites (alignment
columns) the model included 3 discrete rate classes and an invariant site class
(35). The resulting raw branch lengths for a given gene were then mathe-
matically transformed into relative evolutionary rates (RERs), which repre-
sent deviation from the expected amount of divergence. RERs were
calculated by normalizing each branch for each gene by the mean length of
that branch across all genes. Specifically, this normalization was done by
regressing each gene’s branch lengths against the genome-wide mean
branch lengths and using the residual to represent the amount of change
relative to the expectation, wherein positive values represent more change
than expected and negative values represent less change (36). The RERs (i.e.,
the residuals) were thus calculated for all branches, for all genes. ERC be-
tween a given gene pair was calculated as the Pearson correlation co-
efficient between the RER vectors of the 2 genes. ERCs were calculated for
all gene pairs, and care was taken to accommodate all gene pairs, despite
missing species, by recalculating the RER vectors for every pattern of shared
species between all gene pairs.

ERC-Based Gene Ranking. To compare ERC-based rankings to experimental
screens, we plotted the number of known HR or FA factors that fall into
equally sized bins corresponding to 5% of the total number of genes present
in each study. For fair comparison, we only used factors that were present in

both the ERC and experimental datasets for ranking. Hence, 39 HR genes and
20 FA genes are considered in the ranking analysis (versus the 42 HR genes
and 23 FA genes originally considered in SI Appendix, Table S1).

The HR genes considered were BLM, BRCA1, BRCA2, BRIP1, EME1, EXO1,
FANCM, INO80, MRE11A, MUS81, NBN, PALB2, PARPBP, RAD50, RAD51, RAD51B,
RAD51C, RAD51D, RAD52, RAD54B, RAD54L, RBBP8, RECQL, RECQL4, RECQL5,
RMI1, RMI2, RPA1, RPA2, RPA3, SFR1, SLX4, SMARCAL1, SWSAP1, TOP3A, WRN,
XRCC2, XRCC3, and ZRANB3.

The FA genes considered were BRCA1, BRCA2, BRIP1, C17orf70, ERCC4,
FANCA, FANCB, FANCC, FANCD2, FANCE, FANCF, FANCG, FANCI, FANCL, FANCM,
MAD2L2, PALB2, RAD51, RAD51C, and RFWD3.

To account for 1) the different sizes of the screens and 2) the different
numbers of genes in unique cellular pathways, we scaled the x and y axes by
the size of the screen and the number of pathway components, respectively.
For HR, the y axis is defined as

Frequency   of   known HR  genes =
number   of  HR  genes  in bin

total   #  of  HR  genes
,

and the same analysis was performed for FA. Likewise, to directly compare
screens of different sizes, we scaled the x axis by the size of the respective
screen:

Percentile  rank =
position  in  ranked   list
length  of   ranked   list

.

A detailed description of the scan statistic used to determine the enriched
gene window, initially reported in ref. 37, can be found in SI Appendix,
SI Methods.

For a detailed description of the molecular experiments, please see SI
Appendix, SI Methods.
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